Metamath Proof Explorer


Theorem detlem

Description: If a relation is disjoint, then it is equivalent to the equivalent cosets of the relation, inference version. (Contributed by Peter Mazsa, 30-Sep-2021)

Ref Expression
Hypothesis detlem.1 Disj 𝑅
Assertion detlem ( Disj 𝑅 ↔ EqvRel ≀ 𝑅 )

Proof

Step Hyp Ref Expression
1 detlem.1 Disj 𝑅
2 disjim ( Disj 𝑅 → EqvRel ≀ 𝑅 )
3 1 a1i ( EqvRel ≀ 𝑅 → Disj 𝑅 )
4 2 3 impbii ( Disj 𝑅 ↔ EqvRel ≀ 𝑅 )