Description: Define the zero operator between two normed complex vector spaces. (Contributed by NM, 28-Nov-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-0o | ⊢ 0op = ( 𝑢 ∈ NrmCVec , 𝑤 ∈ NrmCVec ↦ ( ( BaseSet ‘ 𝑢 ) × { ( 0vec ‘ 𝑤 ) } ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 0 | c0o | ⊢ 0op | |
| 1 | vu | ⊢ 𝑢 | |
| 2 | cnv | ⊢ NrmCVec | |
| 3 | vw | ⊢ 𝑤 | |
| 4 | cba | ⊢ BaseSet | |
| 5 | 1 | cv | ⊢ 𝑢 | 
| 6 | 5 4 | cfv | ⊢ ( BaseSet ‘ 𝑢 ) | 
| 7 | cn0v | ⊢ 0vec | |
| 8 | 3 | cv | ⊢ 𝑤 | 
| 9 | 8 7 | cfv | ⊢ ( 0vec ‘ 𝑤 ) | 
| 10 | 9 | csn | ⊢ { ( 0vec ‘ 𝑤 ) } | 
| 11 | 6 10 | cxp | ⊢ ( ( BaseSet ‘ 𝑢 ) × { ( 0vec ‘ 𝑤 ) } ) | 
| 12 | 1 3 2 2 11 | cmpo | ⊢ ( 𝑢 ∈ NrmCVec , 𝑤 ∈ NrmCVec ↦ ( ( BaseSet ‘ 𝑢 ) × { ( 0vec ‘ 𝑤 ) } ) ) | 
| 13 | 0 12 | wceq | ⊢ 0op = ( 𝑢 ∈ NrmCVec , 𝑤 ∈ NrmCVec ↦ ( ( BaseSet ‘ 𝑢 ) × { ( 0vec ‘ 𝑤 ) } ) ) |