Description: Define the zero operator between two normed complex vector spaces. (Contributed by NM, 28-Nov-2007) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | df-0o | ⊢ 0op = ( 𝑢 ∈ NrmCVec , 𝑤 ∈ NrmCVec ↦ ( ( BaseSet ‘ 𝑢 ) × { ( 0vec ‘ 𝑤 ) } ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | c0o | ⊢ 0op | |
1 | vu | ⊢ 𝑢 | |
2 | cnv | ⊢ NrmCVec | |
3 | vw | ⊢ 𝑤 | |
4 | cba | ⊢ BaseSet | |
5 | 1 | cv | ⊢ 𝑢 |
6 | 5 4 | cfv | ⊢ ( BaseSet ‘ 𝑢 ) |
7 | cn0v | ⊢ 0vec | |
8 | 3 | cv | ⊢ 𝑤 |
9 | 8 7 | cfv | ⊢ ( 0vec ‘ 𝑤 ) |
10 | 9 | csn | ⊢ { ( 0vec ‘ 𝑤 ) } |
11 | 6 10 | cxp | ⊢ ( ( BaseSet ‘ 𝑢 ) × { ( 0vec ‘ 𝑤 ) } ) |
12 | 1 3 2 2 11 | cmpo | ⊢ ( 𝑢 ∈ NrmCVec , 𝑤 ∈ NrmCVec ↦ ( ( BaseSet ‘ 𝑢 ) × { ( 0vec ‘ 𝑤 ) } ) ) |
13 | 0 12 | wceq | ⊢ 0op = ( 𝑢 ∈ NrmCVec , 𝑤 ∈ NrmCVec ↦ ( ( BaseSet ‘ 𝑢 ) × { ( 0vec ‘ 𝑤 ) } ) ) |