Metamath Proof Explorer


Definition df-0o

Description: Define the zero operator between two normed complex vector spaces. (Contributed by NM, 28-Nov-2007) (New usage is discouraged.)

Ref Expression
Assertion df-0o 0op = ( 𝑢 ∈ NrmCVec , 𝑤 ∈ NrmCVec ↦ ( ( BaseSet ‘ 𝑢 ) × { ( 0vec𝑤 ) } ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 c0o 0op
1 vu 𝑢
2 cnv NrmCVec
3 vw 𝑤
4 cba BaseSet
5 1 cv 𝑢
6 5 4 cfv ( BaseSet ‘ 𝑢 )
7 cn0v 0vec
8 3 cv 𝑤
9 8 7 cfv ( 0vec𝑤 )
10 9 csn { ( 0vec𝑤 ) }
11 6 10 cxp ( ( BaseSet ‘ 𝑢 ) × { ( 0vec𝑤 ) } )
12 1 3 2 2 11 cmpo ( 𝑢 ∈ NrmCVec , 𝑤 ∈ NrmCVec ↦ ( ( BaseSet ‘ 𝑢 ) × { ( 0vec𝑤 ) } ) )
13 0 12 wceq 0op = ( 𝑢 ∈ NrmCVec , 𝑤 ∈ NrmCVec ↦ ( ( BaseSet ‘ 𝑢 ) × { ( 0vec𝑤 ) } ) )