Description: Define the zero vector in a normed complex vector space. (Contributed by NM, 24-Apr-2007) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | df-0v | ⊢ 0vec = ( GId ∘ +𝑣 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | cn0v | ⊢ 0vec | |
1 | cgi | ⊢ GId | |
2 | cpv | ⊢ +𝑣 | |
3 | 1 2 | ccom | ⊢ ( GId ∘ +𝑣 ) |
4 | 0 3 | wceq | ⊢ 0vec = ( GId ∘ +𝑣 ) |