Metamath Proof Explorer


Definition df-1

Description: Define the complex number 1. (Contributed by NM, 22-Feb-1996) (New usage is discouraged.)

Ref Expression
Assertion df-1 1 = ⟨ 1R , 0R

Detailed syntax breakdown

Step Hyp Ref Expression
0 c1 1
1 c1r 1R
2 c0r 0R
3 1 2 cop ⟨ 1R , 0R
4 0 3 wceq 1 = ⟨ 1R , 0R