Metamath Proof Explorer


Definition df-1stc

Description: Define the class of all first-countable topologies. (Contributed by Jeff Hankins, 22-Aug-2009)

Ref Expression
Assertion df-1stc 1stω = { 𝑗 ∈ Top ∣ ∀ 𝑥 𝑗𝑦 ∈ 𝒫 𝑗 ( 𝑦 ≼ ω ∧ ∀ 𝑧𝑗 ( 𝑥𝑧𝑥 ( 𝑦 ∩ 𝒫 𝑧 ) ) ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 c1stc 1stω
1 vj 𝑗
2 ctop Top
3 vx 𝑥
4 1 cv 𝑗
5 4 cuni 𝑗
6 vy 𝑦
7 4 cpw 𝒫 𝑗
8 6 cv 𝑦
9 cdom
10 com ω
11 8 10 9 wbr 𝑦 ≼ ω
12 vz 𝑧
13 3 cv 𝑥
14 12 cv 𝑧
15 13 14 wcel 𝑥𝑧
16 14 cpw 𝒫 𝑧
17 8 16 cin ( 𝑦 ∩ 𝒫 𝑧 )
18 17 cuni ( 𝑦 ∩ 𝒫 𝑧 )
19 13 18 wcel 𝑥 ( 𝑦 ∩ 𝒫 𝑧 )
20 15 19 wi ( 𝑥𝑧𝑥 ( 𝑦 ∩ 𝒫 𝑧 ) )
21 20 12 4 wral 𝑧𝑗 ( 𝑥𝑧𝑥 ( 𝑦 ∩ 𝒫 𝑧 ) )
22 11 21 wa ( 𝑦 ≼ ω ∧ ∀ 𝑧𝑗 ( 𝑥𝑧𝑥 ( 𝑦 ∩ 𝒫 𝑧 ) ) )
23 22 6 7 wrex 𝑦 ∈ 𝒫 𝑗 ( 𝑦 ≼ ω ∧ ∀ 𝑧𝑗 ( 𝑥𝑧𝑥 ( 𝑦 ∩ 𝒫 𝑧 ) ) )
24 23 3 5 wral 𝑥 𝑗𝑦 ∈ 𝒫 𝑗 ( 𝑦 ≼ ω ∧ ∀ 𝑧𝑗 ( 𝑥𝑧𝑥 ( 𝑦 ∩ 𝒫 𝑧 ) ) )
25 24 1 2 crab { 𝑗 ∈ Top ∣ ∀ 𝑥 𝑗𝑦 ∈ 𝒫 𝑗 ( 𝑦 ≼ ω ∧ ∀ 𝑧𝑗 ( 𝑥𝑧𝑥 ( 𝑦 ∩ 𝒫 𝑧 ) ) ) }
26 0 25 wceq 1stω = { 𝑗 ∈ Top ∣ ∀ 𝑥 𝑗𝑦 ∈ 𝒫 𝑗 ( 𝑦 ≼ ω ∧ ∀ 𝑧𝑗 ( 𝑥𝑧𝑥 ( 𝑦 ∩ 𝒫 𝑧 ) ) ) }