| Step | Hyp | Ref | Expression | 
						
							| 0 |  | c1stc | ⊢ 1stω | 
						
							| 1 |  | vj | ⊢ 𝑗 | 
						
							| 2 |  | ctop | ⊢ Top | 
						
							| 3 |  | vx | ⊢ 𝑥 | 
						
							| 4 | 1 | cv | ⊢ 𝑗 | 
						
							| 5 | 4 | cuni | ⊢ ∪  𝑗 | 
						
							| 6 |  | vy | ⊢ 𝑦 | 
						
							| 7 | 4 | cpw | ⊢ 𝒫  𝑗 | 
						
							| 8 | 6 | cv | ⊢ 𝑦 | 
						
							| 9 |  | cdom | ⊢  ≼ | 
						
							| 10 |  | com | ⊢ ω | 
						
							| 11 | 8 10 9 | wbr | ⊢ 𝑦  ≼  ω | 
						
							| 12 |  | vz | ⊢ 𝑧 | 
						
							| 13 | 3 | cv | ⊢ 𝑥 | 
						
							| 14 | 12 | cv | ⊢ 𝑧 | 
						
							| 15 | 13 14 | wcel | ⊢ 𝑥  ∈  𝑧 | 
						
							| 16 | 14 | cpw | ⊢ 𝒫  𝑧 | 
						
							| 17 | 8 16 | cin | ⊢ ( 𝑦  ∩  𝒫  𝑧 ) | 
						
							| 18 | 17 | cuni | ⊢ ∪  ( 𝑦  ∩  𝒫  𝑧 ) | 
						
							| 19 | 13 18 | wcel | ⊢ 𝑥  ∈  ∪  ( 𝑦  ∩  𝒫  𝑧 ) | 
						
							| 20 | 15 19 | wi | ⊢ ( 𝑥  ∈  𝑧  →  𝑥  ∈  ∪  ( 𝑦  ∩  𝒫  𝑧 ) ) | 
						
							| 21 | 20 12 4 | wral | ⊢ ∀ 𝑧  ∈  𝑗 ( 𝑥  ∈  𝑧  →  𝑥  ∈  ∪  ( 𝑦  ∩  𝒫  𝑧 ) ) | 
						
							| 22 | 11 21 | wa | ⊢ ( 𝑦  ≼  ω  ∧  ∀ 𝑧  ∈  𝑗 ( 𝑥  ∈  𝑧  →  𝑥  ∈  ∪  ( 𝑦  ∩  𝒫  𝑧 ) ) ) | 
						
							| 23 | 22 6 7 | wrex | ⊢ ∃ 𝑦  ∈  𝒫  𝑗 ( 𝑦  ≼  ω  ∧  ∀ 𝑧  ∈  𝑗 ( 𝑥  ∈  𝑧  →  𝑥  ∈  ∪  ( 𝑦  ∩  𝒫  𝑧 ) ) ) | 
						
							| 24 | 23 3 5 | wral | ⊢ ∀ 𝑥  ∈  ∪  𝑗 ∃ 𝑦  ∈  𝒫  𝑗 ( 𝑦  ≼  ω  ∧  ∀ 𝑧  ∈  𝑗 ( 𝑥  ∈  𝑧  →  𝑥  ∈  ∪  ( 𝑦  ∩  𝒫  𝑧 ) ) ) | 
						
							| 25 | 24 1 2 | crab | ⊢ { 𝑗  ∈  Top  ∣  ∀ 𝑥  ∈  ∪  𝑗 ∃ 𝑦  ∈  𝒫  𝑗 ( 𝑦  ≼  ω  ∧  ∀ 𝑧  ∈  𝑗 ( 𝑥  ∈  𝑧  →  𝑥  ∈  ∪  ( 𝑦  ∩  𝒫  𝑧 ) ) ) } | 
						
							| 26 | 0 25 | wceq | ⊢ 1stω  =  { 𝑗  ∈  Top  ∣  ∀ 𝑥  ∈  ∪  𝑗 ∃ 𝑦  ∈  𝒫  𝑗 ( 𝑦  ≼  ω  ∧  ∀ 𝑧  ∈  𝑗 ( 𝑥  ∈  𝑧  →  𝑥  ∈  ∪  ( 𝑦  ∩  𝒫  𝑧 ) ) ) } |