Metamath Proof Explorer


Definition df-2ndc

Description: Define the class of all second-countable topologies. (Contributed by Jeff Hankins, 17-Jan-2010)

Ref Expression
Assertion df-2ndc 2ndω = { 𝑗 ∣ ∃ 𝑥 ∈ TopBases ( 𝑥 ≼ ω ∧ ( topGen ‘ 𝑥 ) = 𝑗 ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 c2ndc 2ndω
1 vj 𝑗
2 vx 𝑥
3 ctb TopBases
4 2 cv 𝑥
5 cdom
6 com ω
7 4 6 5 wbr 𝑥 ≼ ω
8 ctg topGen
9 4 8 cfv ( topGen ‘ 𝑥 )
10 1 cv 𝑗
11 9 10 wceq ( topGen ‘ 𝑥 ) = 𝑗
12 7 11 wa ( 𝑥 ≼ ω ∧ ( topGen ‘ 𝑥 ) = 𝑗 )
13 12 2 3 wrex 𝑥 ∈ TopBases ( 𝑥 ≼ ω ∧ ( topGen ‘ 𝑥 ) = 𝑗 )
14 13 1 cab { 𝑗 ∣ ∃ 𝑥 ∈ TopBases ( 𝑥 ≼ ω ∧ ( topGen ‘ 𝑥 ) = 𝑗 ) }
15 0 14 wceq 2ndω = { 𝑗 ∣ ∃ 𝑥 ∈ TopBases ( 𝑥 ≼ ω ∧ ( topGen ‘ 𝑥 ) = 𝑗 ) }