Description: Define the class of all second-countable topologies. (Contributed by Jeff Hankins, 17-Jan-2010)
Ref | Expression | ||
---|---|---|---|
Assertion | df-2ndc | ⊢ 2ndω = { 𝑗 ∣ ∃ 𝑥 ∈ TopBases ( 𝑥 ≼ ω ∧ ( topGen ‘ 𝑥 ) = 𝑗 ) } |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | c2ndc | ⊢ 2ndω | |
1 | vj | ⊢ 𝑗 | |
2 | vx | ⊢ 𝑥 | |
3 | ctb | ⊢ TopBases | |
4 | 2 | cv | ⊢ 𝑥 |
5 | cdom | ⊢ ≼ | |
6 | com | ⊢ ω | |
7 | 4 6 5 | wbr | ⊢ 𝑥 ≼ ω |
8 | ctg | ⊢ topGen | |
9 | 4 8 | cfv | ⊢ ( topGen ‘ 𝑥 ) |
10 | 1 | cv | ⊢ 𝑗 |
11 | 9 10 | wceq | ⊢ ( topGen ‘ 𝑥 ) = 𝑗 |
12 | 7 11 | wa | ⊢ ( 𝑥 ≼ ω ∧ ( topGen ‘ 𝑥 ) = 𝑗 ) |
13 | 12 2 3 | wrex | ⊢ ∃ 𝑥 ∈ TopBases ( 𝑥 ≼ ω ∧ ( topGen ‘ 𝑥 ) = 𝑗 ) |
14 | 13 1 | cab | ⊢ { 𝑗 ∣ ∃ 𝑥 ∈ TopBases ( 𝑥 ≼ ω ∧ ( topGen ‘ 𝑥 ) = 𝑗 ) } |
15 | 0 14 | wceq | ⊢ 2ndω = { 𝑗 ∣ ∃ 𝑥 ∈ TopBases ( 𝑥 ≼ ω ∧ ( topGen ‘ 𝑥 ) = 𝑗 ) } |