Description: Define the class of all second-countable topologies. (Contributed by Jeff Hankins, 17-Jan-2010)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-2ndc | ⊢ 2ndω = { 𝑗 ∣ ∃ 𝑥 ∈ TopBases ( 𝑥 ≼ ω ∧ ( topGen ‘ 𝑥 ) = 𝑗 ) } | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 0 | c2ndc | ⊢ 2ndω | |
| 1 | vj | ⊢ 𝑗 | |
| 2 | vx | ⊢ 𝑥 | |
| 3 | ctb | ⊢ TopBases | |
| 4 | 2 | cv | ⊢ 𝑥 | 
| 5 | cdom | ⊢ ≼ | |
| 6 | com | ⊢ ω | |
| 7 | 4 6 5 | wbr | ⊢ 𝑥 ≼ ω | 
| 8 | ctg | ⊢ topGen | |
| 9 | 4 8 | cfv | ⊢ ( topGen ‘ 𝑥 ) | 
| 10 | 1 | cv | ⊢ 𝑗 | 
| 11 | 9 10 | wceq | ⊢ ( topGen ‘ 𝑥 ) = 𝑗 | 
| 12 | 7 11 | wa | ⊢ ( 𝑥 ≼ ω ∧ ( topGen ‘ 𝑥 ) = 𝑗 ) | 
| 13 | 12 2 3 | wrex | ⊢ ∃ 𝑥 ∈ TopBases ( 𝑥 ≼ ω ∧ ( topGen ‘ 𝑥 ) = 𝑗 ) | 
| 14 | 13 1 | cab | ⊢ { 𝑗 ∣ ∃ 𝑥 ∈ TopBases ( 𝑥 ≼ ω ∧ ( topGen ‘ 𝑥 ) = 𝑗 ) } | 
| 15 | 0 14 | wceq | ⊢ 2ndω = { 𝑗 ∣ ∃ 𝑥 ∈ TopBases ( 𝑥 ≼ ω ∧ ( topGen ‘ 𝑥 ) = 𝑗 ) } |