Metamath Proof Explorer


Definition df-3nand

Description: The double nand. This definition allows us to express the input of three variables only being false if all three are true. (Contributed by Anthony Hart, 2-Sep-2011)

Ref Expression
Assertion df-3nand ( ( 𝜑𝜓𝜒 ) ↔ ( 𝜑 → ( 𝜓 → ¬ 𝜒 ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 wph 𝜑
1 wps 𝜓
2 wch 𝜒
3 0 1 2 w3nand ( 𝜑𝜓𝜒 )
4 2 wn ¬ 𝜒
5 1 4 wi ( 𝜓 → ¬ 𝜒 )
6 0 5 wi ( 𝜑 → ( 𝜓 → ¬ 𝜒 ) )
7 3 6 wb ( ( 𝜑𝜓𝜒 ) ↔ ( 𝜑 → ( 𝜓 → ¬ 𝜒 ) ) )