Metamath Proof Explorer


Definition df-aa

Description: Define the set of algebraic numbers. An algebraic number is a root of a nonzero polynomial over the integers. Here we construct it as the union of all kernels (preimages of { 0 } ) of all polynomials in ( PolyZZ ) , except the zero polynomial 0p . (Contributed by Mario Carneiro, 22-Jul-2014)

Ref Expression
Assertion df-aa 𝔸 = 𝑓 ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ( 𝑓 “ { 0 } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 caa 𝔸
1 vf 𝑓
2 cply Poly
3 cz
4 3 2 cfv ( Poly ‘ ℤ )
5 c0p 0𝑝
6 5 csn { 0𝑝 }
7 4 6 cdif ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } )
8 1 cv 𝑓
9 8 ccnv 𝑓
10 cc0 0
11 10 csn { 0 }
12 9 11 cima ( 𝑓 “ { 0 } )
13 1 7 12 ciun 𝑓 ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ( 𝑓 “ { 0 } )
14 0 13 wceq 𝔸 = 𝑓 ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ( 𝑓 “ { 0 } )