Metamath Proof Explorer


Definition df-ablo

Description: Define the class of all Abelian group operations. (Contributed by NM, 2-Nov-2006) (New usage is discouraged.)

Ref Expression
Assertion df-ablo AbelOp = { 𝑔 ∈ GrpOp ∣ ∀ 𝑥 ∈ ran 𝑔𝑦 ∈ ran 𝑔 ( 𝑥 𝑔 𝑦 ) = ( 𝑦 𝑔 𝑥 ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cablo AbelOp
1 vg 𝑔
2 cgr GrpOp
3 vx 𝑥
4 1 cv 𝑔
5 4 crn ran 𝑔
6 vy 𝑦
7 3 cv 𝑥
8 6 cv 𝑦
9 7 8 4 co ( 𝑥 𝑔 𝑦 )
10 8 7 4 co ( 𝑦 𝑔 𝑥 )
11 9 10 wceq ( 𝑥 𝑔 𝑦 ) = ( 𝑦 𝑔 𝑥 )
12 11 6 5 wral 𝑦 ∈ ran 𝑔 ( 𝑥 𝑔 𝑦 ) = ( 𝑦 𝑔 𝑥 )
13 12 3 5 wral 𝑥 ∈ ran 𝑔𝑦 ∈ ran 𝑔 ( 𝑥 𝑔 𝑦 ) = ( 𝑦 𝑔 𝑥 )
14 13 1 2 crab { 𝑔 ∈ GrpOp ∣ ∀ 𝑥 ∈ ran 𝑔𝑦 ∈ ran 𝑔 ( 𝑥 𝑔 𝑦 ) = ( 𝑦 𝑔 𝑥 ) }
15 0 14 wceq AbelOp = { 𝑔 ∈ GrpOp ∣ ∀ 𝑥 ∈ ran 𝑔𝑦 ∈ ran 𝑔 ( 𝑥 𝑔 𝑦 ) = ( 𝑦 𝑔 𝑥 ) }