Description: Define the class of all Abelian group operations. (Contributed by NM, 2-Nov-2006) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | df-ablo | ⊢ AbelOp = { 𝑔 ∈ GrpOp ∣ ∀ 𝑥 ∈ ran 𝑔 ∀ 𝑦 ∈ ran 𝑔 ( 𝑥 𝑔 𝑦 ) = ( 𝑦 𝑔 𝑥 ) } |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | cablo | ⊢ AbelOp | |
1 | vg | ⊢ 𝑔 | |
2 | cgr | ⊢ GrpOp | |
3 | vx | ⊢ 𝑥 | |
4 | 1 | cv | ⊢ 𝑔 |
5 | 4 | crn | ⊢ ran 𝑔 |
6 | vy | ⊢ 𝑦 | |
7 | 3 | cv | ⊢ 𝑥 |
8 | 6 | cv | ⊢ 𝑦 |
9 | 7 8 4 | co | ⊢ ( 𝑥 𝑔 𝑦 ) |
10 | 8 7 4 | co | ⊢ ( 𝑦 𝑔 𝑥 ) |
11 | 9 10 | wceq | ⊢ ( 𝑥 𝑔 𝑦 ) = ( 𝑦 𝑔 𝑥 ) |
12 | 11 6 5 | wral | ⊢ ∀ 𝑦 ∈ ran 𝑔 ( 𝑥 𝑔 𝑦 ) = ( 𝑦 𝑔 𝑥 ) |
13 | 12 3 5 | wral | ⊢ ∀ 𝑥 ∈ ran 𝑔 ∀ 𝑦 ∈ ran 𝑔 ( 𝑥 𝑔 𝑦 ) = ( 𝑦 𝑔 𝑥 ) |
14 | 13 1 2 | crab | ⊢ { 𝑔 ∈ GrpOp ∣ ∀ 𝑥 ∈ ran 𝑔 ∀ 𝑦 ∈ ran 𝑔 ( 𝑥 𝑔 𝑦 ) = ( 𝑦 𝑔 𝑥 ) } |
15 | 0 14 | wceq | ⊢ AbelOp = { 𝑔 ∈ GrpOp ∣ ∀ 𝑥 ∈ ran 𝑔 ∀ 𝑦 ∈ ran 𝑔 ( 𝑥 𝑔 𝑦 ) = ( 𝑦 𝑔 𝑥 ) } |