Step |
Hyp |
Ref |
Expression |
0 |
|
cabv |
⊢ AbsVal |
1 |
|
vr |
⊢ 𝑟 |
2 |
|
crg |
⊢ Ring |
3 |
|
vf |
⊢ 𝑓 |
4 |
|
cc0 |
⊢ 0 |
5 |
|
cico |
⊢ [,) |
6 |
|
cpnf |
⊢ +∞ |
7 |
4 6 5
|
co |
⊢ ( 0 [,) +∞ ) |
8 |
|
cmap |
⊢ ↑m |
9 |
|
cbs |
⊢ Base |
10 |
1
|
cv |
⊢ 𝑟 |
11 |
10 9
|
cfv |
⊢ ( Base ‘ 𝑟 ) |
12 |
7 11 8
|
co |
⊢ ( ( 0 [,) +∞ ) ↑m ( Base ‘ 𝑟 ) ) |
13 |
|
vx |
⊢ 𝑥 |
14 |
3
|
cv |
⊢ 𝑓 |
15 |
13
|
cv |
⊢ 𝑥 |
16 |
15 14
|
cfv |
⊢ ( 𝑓 ‘ 𝑥 ) |
17 |
16 4
|
wceq |
⊢ ( 𝑓 ‘ 𝑥 ) = 0 |
18 |
|
c0g |
⊢ 0g |
19 |
10 18
|
cfv |
⊢ ( 0g ‘ 𝑟 ) |
20 |
15 19
|
wceq |
⊢ 𝑥 = ( 0g ‘ 𝑟 ) |
21 |
17 20
|
wb |
⊢ ( ( 𝑓 ‘ 𝑥 ) = 0 ↔ 𝑥 = ( 0g ‘ 𝑟 ) ) |
22 |
|
vy |
⊢ 𝑦 |
23 |
|
cmulr |
⊢ .r |
24 |
10 23
|
cfv |
⊢ ( .r ‘ 𝑟 ) |
25 |
22
|
cv |
⊢ 𝑦 |
26 |
15 25 24
|
co |
⊢ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) |
27 |
26 14
|
cfv |
⊢ ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) |
28 |
|
cmul |
⊢ · |
29 |
25 14
|
cfv |
⊢ ( 𝑓 ‘ 𝑦 ) |
30 |
16 29 28
|
co |
⊢ ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑦 ) ) |
31 |
27 30
|
wceq |
⊢ ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑦 ) ) |
32 |
|
cplusg |
⊢ +g |
33 |
10 32
|
cfv |
⊢ ( +g ‘ 𝑟 ) |
34 |
15 25 33
|
co |
⊢ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) |
35 |
34 14
|
cfv |
⊢ ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) |
36 |
|
cle |
⊢ ≤ |
37 |
|
caddc |
⊢ + |
38 |
16 29 37
|
co |
⊢ ( ( 𝑓 ‘ 𝑥 ) + ( 𝑓 ‘ 𝑦 ) ) |
39 |
35 38 36
|
wbr |
⊢ ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) ≤ ( ( 𝑓 ‘ 𝑥 ) + ( 𝑓 ‘ 𝑦 ) ) |
40 |
31 39
|
wa |
⊢ ( ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) ≤ ( ( 𝑓 ‘ 𝑥 ) + ( 𝑓 ‘ 𝑦 ) ) ) |
41 |
40 22 11
|
wral |
⊢ ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) ≤ ( ( 𝑓 ‘ 𝑥 ) + ( 𝑓 ‘ 𝑦 ) ) ) |
42 |
21 41
|
wa |
⊢ ( ( ( 𝑓 ‘ 𝑥 ) = 0 ↔ 𝑥 = ( 0g ‘ 𝑟 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) ≤ ( ( 𝑓 ‘ 𝑥 ) + ( 𝑓 ‘ 𝑦 ) ) ) ) |
43 |
42 13 11
|
wral |
⊢ ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ( ( ( 𝑓 ‘ 𝑥 ) = 0 ↔ 𝑥 = ( 0g ‘ 𝑟 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) ≤ ( ( 𝑓 ‘ 𝑥 ) + ( 𝑓 ‘ 𝑦 ) ) ) ) |
44 |
43 3 12
|
crab |
⊢ { 𝑓 ∈ ( ( 0 [,) +∞ ) ↑m ( Base ‘ 𝑟 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ( ( ( 𝑓 ‘ 𝑥 ) = 0 ↔ 𝑥 = ( 0g ‘ 𝑟 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) ≤ ( ( 𝑓 ‘ 𝑥 ) + ( 𝑓 ‘ 𝑦 ) ) ) ) } |
45 |
1 2 44
|
cmpt |
⊢ ( 𝑟 ∈ Ring ↦ { 𝑓 ∈ ( ( 0 [,) +∞ ) ↑m ( Base ‘ 𝑟 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ( ( ( 𝑓 ‘ 𝑥 ) = 0 ↔ 𝑥 = ( 0g ‘ 𝑟 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) ≤ ( ( 𝑓 ‘ 𝑥 ) + ( 𝑓 ‘ 𝑦 ) ) ) ) } ) |
46 |
0 45
|
wceq |
⊢ AbsVal = ( 𝑟 ∈ Ring ↦ { 𝑓 ∈ ( ( 0 [,) +∞ ) ↑m ( Base ‘ 𝑟 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ( ( ( 𝑓 ‘ 𝑥 ) = 0 ↔ 𝑥 = ( 0g ‘ 𝑟 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) ≤ ( ( 𝑓 ‘ 𝑥 ) + ( 𝑓 ‘ 𝑦 ) ) ) ) } ) |