| Step | Hyp | Ref | Expression | 
						
							| 0 |  | cA | ⊢ 𝐴 | 
						
							| 1 | 0 | wacn | ⊢ AC  𝐴 | 
						
							| 2 |  | vx | ⊢ 𝑥 | 
						
							| 3 |  | cvv | ⊢ V | 
						
							| 4 | 0 3 | wcel | ⊢ 𝐴  ∈  V | 
						
							| 5 |  | vf | ⊢ 𝑓 | 
						
							| 6 | 2 | cv | ⊢ 𝑥 | 
						
							| 7 | 6 | cpw | ⊢ 𝒫  𝑥 | 
						
							| 8 |  | c0 | ⊢ ∅ | 
						
							| 9 | 8 | csn | ⊢ { ∅ } | 
						
							| 10 | 7 9 | cdif | ⊢ ( 𝒫  𝑥  ∖  { ∅ } ) | 
						
							| 11 |  | cmap | ⊢  ↑m | 
						
							| 12 | 10 0 11 | co | ⊢ ( ( 𝒫  𝑥  ∖  { ∅ } )  ↑m  𝐴 ) | 
						
							| 13 |  | vg | ⊢ 𝑔 | 
						
							| 14 |  | vy | ⊢ 𝑦 | 
						
							| 15 | 13 | cv | ⊢ 𝑔 | 
						
							| 16 | 14 | cv | ⊢ 𝑦 | 
						
							| 17 | 16 15 | cfv | ⊢ ( 𝑔 ‘ 𝑦 ) | 
						
							| 18 | 5 | cv | ⊢ 𝑓 | 
						
							| 19 | 16 18 | cfv | ⊢ ( 𝑓 ‘ 𝑦 ) | 
						
							| 20 | 17 19 | wcel | ⊢ ( 𝑔 ‘ 𝑦 )  ∈  ( 𝑓 ‘ 𝑦 ) | 
						
							| 21 | 20 14 0 | wral | ⊢ ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝑓 ‘ 𝑦 ) | 
						
							| 22 | 21 13 | wex | ⊢ ∃ 𝑔 ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝑓 ‘ 𝑦 ) | 
						
							| 23 | 22 5 12 | wral | ⊢ ∀ 𝑓  ∈  ( ( 𝒫  𝑥  ∖  { ∅ } )  ↑m  𝐴 ) ∃ 𝑔 ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝑓 ‘ 𝑦 ) | 
						
							| 24 | 4 23 | wa | ⊢ ( 𝐴  ∈  V  ∧  ∀ 𝑓  ∈  ( ( 𝒫  𝑥  ∖  { ∅ } )  ↑m  𝐴 ) ∃ 𝑔 ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝑓 ‘ 𝑦 ) ) | 
						
							| 25 | 24 2 | cab | ⊢ { 𝑥  ∣  ( 𝐴  ∈  V  ∧  ∀ 𝑓  ∈  ( ( 𝒫  𝑥  ∖  { ∅ } )  ↑m  𝐴 ) ∃ 𝑔 ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝑓 ‘ 𝑦 ) ) } | 
						
							| 26 | 1 25 | wceq | ⊢ AC  𝐴  =  { 𝑥  ∣  ( 𝐴  ∈  V  ∧  ∀ 𝑓  ∈  ( ( 𝒫  𝑥  ∖  { ∅ } )  ↑m  𝐴 ) ∃ 𝑔 ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝑓 ‘ 𝑦 ) ) } |