Step |
Hyp |
Ref |
Expression |
0 |
|
cacs |
⊢ ACS |
1 |
|
vx |
⊢ 𝑥 |
2 |
|
cvv |
⊢ V |
3 |
|
vc |
⊢ 𝑐 |
4 |
|
cmre |
⊢ Moore |
5 |
1
|
cv |
⊢ 𝑥 |
6 |
5 4
|
cfv |
⊢ ( Moore ‘ 𝑥 ) |
7 |
|
vf |
⊢ 𝑓 |
8 |
7
|
cv |
⊢ 𝑓 |
9 |
5
|
cpw |
⊢ 𝒫 𝑥 |
10 |
9 9 8
|
wf |
⊢ 𝑓 : 𝒫 𝑥 ⟶ 𝒫 𝑥 |
11 |
|
vs |
⊢ 𝑠 |
12 |
11
|
cv |
⊢ 𝑠 |
13 |
3
|
cv |
⊢ 𝑐 |
14 |
12 13
|
wcel |
⊢ 𝑠 ∈ 𝑐 |
15 |
12
|
cpw |
⊢ 𝒫 𝑠 |
16 |
|
cfn |
⊢ Fin |
17 |
15 16
|
cin |
⊢ ( 𝒫 𝑠 ∩ Fin ) |
18 |
8 17
|
cima |
⊢ ( 𝑓 “ ( 𝒫 𝑠 ∩ Fin ) ) |
19 |
18
|
cuni |
⊢ ∪ ( 𝑓 “ ( 𝒫 𝑠 ∩ Fin ) ) |
20 |
19 12
|
wss |
⊢ ∪ ( 𝑓 “ ( 𝒫 𝑠 ∩ Fin ) ) ⊆ 𝑠 |
21 |
14 20
|
wb |
⊢ ( 𝑠 ∈ 𝑐 ↔ ∪ ( 𝑓 “ ( 𝒫 𝑠 ∩ Fin ) ) ⊆ 𝑠 ) |
22 |
21 11 9
|
wral |
⊢ ∀ 𝑠 ∈ 𝒫 𝑥 ( 𝑠 ∈ 𝑐 ↔ ∪ ( 𝑓 “ ( 𝒫 𝑠 ∩ Fin ) ) ⊆ 𝑠 ) |
23 |
10 22
|
wa |
⊢ ( 𝑓 : 𝒫 𝑥 ⟶ 𝒫 𝑥 ∧ ∀ 𝑠 ∈ 𝒫 𝑥 ( 𝑠 ∈ 𝑐 ↔ ∪ ( 𝑓 “ ( 𝒫 𝑠 ∩ Fin ) ) ⊆ 𝑠 ) ) |
24 |
23 7
|
wex |
⊢ ∃ 𝑓 ( 𝑓 : 𝒫 𝑥 ⟶ 𝒫 𝑥 ∧ ∀ 𝑠 ∈ 𝒫 𝑥 ( 𝑠 ∈ 𝑐 ↔ ∪ ( 𝑓 “ ( 𝒫 𝑠 ∩ Fin ) ) ⊆ 𝑠 ) ) |
25 |
24 3 6
|
crab |
⊢ { 𝑐 ∈ ( Moore ‘ 𝑥 ) ∣ ∃ 𝑓 ( 𝑓 : 𝒫 𝑥 ⟶ 𝒫 𝑥 ∧ ∀ 𝑠 ∈ 𝒫 𝑥 ( 𝑠 ∈ 𝑐 ↔ ∪ ( 𝑓 “ ( 𝒫 𝑠 ∩ Fin ) ) ⊆ 𝑠 ) ) } |
26 |
1 2 25
|
cmpt |
⊢ ( 𝑥 ∈ V ↦ { 𝑐 ∈ ( Moore ‘ 𝑥 ) ∣ ∃ 𝑓 ( 𝑓 : 𝒫 𝑥 ⟶ 𝒫 𝑥 ∧ ∀ 𝑠 ∈ 𝒫 𝑥 ( 𝑠 ∈ 𝑐 ↔ ∪ ( 𝑓 “ ( 𝒫 𝑠 ∩ Fin ) ) ⊆ 𝑠 ) ) } ) |
27 |
0 26
|
wceq |
⊢ ACS = ( 𝑥 ∈ V ↦ { 𝑐 ∈ ( Moore ‘ 𝑥 ) ∣ ∃ 𝑓 ( 𝑓 : 𝒫 𝑥 ⟶ 𝒫 𝑥 ∧ ∀ 𝑠 ∈ 𝒫 𝑥 ( 𝑠 ∈ 𝑐 ↔ ∪ ( 𝑓 “ ( 𝒫 𝑠 ∩ Fin ) ) ⊆ 𝑠 ) ) } ) |