Metamath Proof Explorer


Definition df-add

Description: Define addition over complex numbers. (Contributed by NM, 28-May-1995) (New usage is discouraged.)

Ref Expression
Assertion df-add + = { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ∧ ∃ 𝑤𝑣𝑢𝑓 ( ( 𝑥 = ⟨ 𝑤 , 𝑣 ⟩ ∧ 𝑦 = ⟨ 𝑢 , 𝑓 ⟩ ) ∧ 𝑧 = ⟨ ( 𝑤 +R 𝑢 ) , ( 𝑣 +R 𝑓 ) ⟩ ) ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 caddc +
1 vx 𝑥
2 vy 𝑦
3 vz 𝑧
4 1 cv 𝑥
5 cc
6 4 5 wcel 𝑥 ∈ ℂ
7 2 cv 𝑦
8 7 5 wcel 𝑦 ∈ ℂ
9 6 8 wa ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ )
10 vw 𝑤
11 vv 𝑣
12 vu 𝑢
13 vf 𝑓
14 10 cv 𝑤
15 11 cv 𝑣
16 14 15 cop 𝑤 , 𝑣
17 4 16 wceq 𝑥 = ⟨ 𝑤 , 𝑣
18 12 cv 𝑢
19 13 cv 𝑓
20 18 19 cop 𝑢 , 𝑓
21 7 20 wceq 𝑦 = ⟨ 𝑢 , 𝑓
22 17 21 wa ( 𝑥 = ⟨ 𝑤 , 𝑣 ⟩ ∧ 𝑦 = ⟨ 𝑢 , 𝑓 ⟩ )
23 3 cv 𝑧
24 cplr +R
25 14 18 24 co ( 𝑤 +R 𝑢 )
26 15 19 24 co ( 𝑣 +R 𝑓 )
27 25 26 cop ⟨ ( 𝑤 +R 𝑢 ) , ( 𝑣 +R 𝑓 ) ⟩
28 23 27 wceq 𝑧 = ⟨ ( 𝑤 +R 𝑢 ) , ( 𝑣 +R 𝑓 ) ⟩
29 22 28 wa ( ( 𝑥 = ⟨ 𝑤 , 𝑣 ⟩ ∧ 𝑦 = ⟨ 𝑢 , 𝑓 ⟩ ) ∧ 𝑧 = ⟨ ( 𝑤 +R 𝑢 ) , ( 𝑣 +R 𝑓 ) ⟩ )
30 29 13 wex 𝑓 ( ( 𝑥 = ⟨ 𝑤 , 𝑣 ⟩ ∧ 𝑦 = ⟨ 𝑢 , 𝑓 ⟩ ) ∧ 𝑧 = ⟨ ( 𝑤 +R 𝑢 ) , ( 𝑣 +R 𝑓 ) ⟩ )
31 30 12 wex 𝑢𝑓 ( ( 𝑥 = ⟨ 𝑤 , 𝑣 ⟩ ∧ 𝑦 = ⟨ 𝑢 , 𝑓 ⟩ ) ∧ 𝑧 = ⟨ ( 𝑤 +R 𝑢 ) , ( 𝑣 +R 𝑓 ) ⟩ )
32 31 11 wex 𝑣𝑢𝑓 ( ( 𝑥 = ⟨ 𝑤 , 𝑣 ⟩ ∧ 𝑦 = ⟨ 𝑢 , 𝑓 ⟩ ) ∧ 𝑧 = ⟨ ( 𝑤 +R 𝑢 ) , ( 𝑣 +R 𝑓 ) ⟩ )
33 32 10 wex 𝑤𝑣𝑢𝑓 ( ( 𝑥 = ⟨ 𝑤 , 𝑣 ⟩ ∧ 𝑦 = ⟨ 𝑢 , 𝑓 ⟩ ) ∧ 𝑧 = ⟨ ( 𝑤 +R 𝑢 ) , ( 𝑣 +R 𝑓 ) ⟩ )
34 9 33 wa ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ∧ ∃ 𝑤𝑣𝑢𝑓 ( ( 𝑥 = ⟨ 𝑤 , 𝑣 ⟩ ∧ 𝑦 = ⟨ 𝑢 , 𝑓 ⟩ ) ∧ 𝑧 = ⟨ ( 𝑤 +R 𝑢 ) , ( 𝑣 +R 𝑓 ) ⟩ ) )
35 34 1 2 3 coprab { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ∧ ∃ 𝑤𝑣𝑢𝑓 ( ( 𝑥 = ⟨ 𝑤 , 𝑣 ⟩ ∧ 𝑦 = ⟨ 𝑢 , 𝑓 ⟩ ) ∧ 𝑧 = ⟨ ( 𝑤 +R 𝑢 ) , ( 𝑣 +R 𝑓 ) ⟩ ) ) }
36 0 35 wceq + = { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ∧ ∃ 𝑤𝑣𝑢𝑓 ( ( 𝑥 = ⟨ 𝑤 , 𝑣 ⟩ ∧ 𝑦 = ⟨ 𝑢 , 𝑓 ⟩ ) ∧ 𝑧 = ⟨ ( 𝑤 +R 𝑢 ) , ( 𝑣 +R 𝑓 ) ⟩ ) ) }