| Step | Hyp | Ref | Expression | 
						
							| 0 |  | cado | ⊢ adjℎ | 
						
							| 1 |  | vt | ⊢ 𝑡 | 
						
							| 2 |  | vu | ⊢ 𝑢 | 
						
							| 3 | 1 | cv | ⊢ 𝑡 | 
						
							| 4 |  | chba | ⊢  ℋ | 
						
							| 5 | 4 4 3 | wf | ⊢ 𝑡 :  ℋ ⟶  ℋ | 
						
							| 6 | 2 | cv | ⊢ 𝑢 | 
						
							| 7 | 4 4 6 | wf | ⊢ 𝑢 :  ℋ ⟶  ℋ | 
						
							| 8 |  | vx | ⊢ 𝑥 | 
						
							| 9 |  | vy | ⊢ 𝑦 | 
						
							| 10 | 8 | cv | ⊢ 𝑥 | 
						
							| 11 | 10 3 | cfv | ⊢ ( 𝑡 ‘ 𝑥 ) | 
						
							| 12 |  | csp | ⊢  ·ih | 
						
							| 13 | 9 | cv | ⊢ 𝑦 | 
						
							| 14 | 11 13 12 | co | ⊢ ( ( 𝑡 ‘ 𝑥 )  ·ih  𝑦 ) | 
						
							| 15 | 13 6 | cfv | ⊢ ( 𝑢 ‘ 𝑦 ) | 
						
							| 16 | 10 15 12 | co | ⊢ ( 𝑥  ·ih  ( 𝑢 ‘ 𝑦 ) ) | 
						
							| 17 | 14 16 | wceq | ⊢ ( ( 𝑡 ‘ 𝑥 )  ·ih  𝑦 )  =  ( 𝑥  ·ih  ( 𝑢 ‘ 𝑦 ) ) | 
						
							| 18 | 17 9 4 | wral | ⊢ ∀ 𝑦  ∈   ℋ ( ( 𝑡 ‘ 𝑥 )  ·ih  𝑦 )  =  ( 𝑥  ·ih  ( 𝑢 ‘ 𝑦 ) ) | 
						
							| 19 | 18 8 4 | wral | ⊢ ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( ( 𝑡 ‘ 𝑥 )  ·ih  𝑦 )  =  ( 𝑥  ·ih  ( 𝑢 ‘ 𝑦 ) ) | 
						
							| 20 | 5 7 19 | w3a | ⊢ ( 𝑡 :  ℋ ⟶  ℋ  ∧  𝑢 :  ℋ ⟶  ℋ  ∧  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( ( 𝑡 ‘ 𝑥 )  ·ih  𝑦 )  =  ( 𝑥  ·ih  ( 𝑢 ‘ 𝑦 ) ) ) | 
						
							| 21 | 20 1 2 | copab | ⊢ { 〈 𝑡 ,  𝑢 〉  ∣  ( 𝑡 :  ℋ ⟶  ℋ  ∧  𝑢 :  ℋ ⟶  ℋ  ∧  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( ( 𝑡 ‘ 𝑥 )  ·ih  𝑦 )  =  ( 𝑥  ·ih  ( 𝑢 ‘ 𝑦 ) ) ) } | 
						
							| 22 | 0 21 | wceq | ⊢ adjℎ  =  { 〈 𝑡 ,  𝑢 〉  ∣  ( 𝑡 :  ℋ ⟶  ℋ  ∧  𝑢 :  ℋ ⟶  ℋ  ∧  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( ( 𝑡 ‘ 𝑥 )  ·ih  𝑦 )  =  ( 𝑥  ·ih  ( 𝑢 ‘ 𝑦 ) ) ) } |