Step |
Hyp |
Ref |
Expression |
0 |
|
caj |
⊢ adj |
1 |
|
vu |
⊢ 𝑢 |
2 |
|
cnv |
⊢ NrmCVec |
3 |
|
vw |
⊢ 𝑤 |
4 |
|
vt |
⊢ 𝑡 |
5 |
|
vs |
⊢ 𝑠 |
6 |
4
|
cv |
⊢ 𝑡 |
7 |
|
cba |
⊢ BaseSet |
8 |
1
|
cv |
⊢ 𝑢 |
9 |
8 7
|
cfv |
⊢ ( BaseSet ‘ 𝑢 ) |
10 |
3
|
cv |
⊢ 𝑤 |
11 |
10 7
|
cfv |
⊢ ( BaseSet ‘ 𝑤 ) |
12 |
9 11 6
|
wf |
⊢ 𝑡 : ( BaseSet ‘ 𝑢 ) ⟶ ( BaseSet ‘ 𝑤 ) |
13 |
5
|
cv |
⊢ 𝑠 |
14 |
11 9 13
|
wf |
⊢ 𝑠 : ( BaseSet ‘ 𝑤 ) ⟶ ( BaseSet ‘ 𝑢 ) |
15 |
|
vx |
⊢ 𝑥 |
16 |
|
vy |
⊢ 𝑦 |
17 |
15
|
cv |
⊢ 𝑥 |
18 |
17 6
|
cfv |
⊢ ( 𝑡 ‘ 𝑥 ) |
19 |
|
cdip |
⊢ ·𝑖OLD |
20 |
10 19
|
cfv |
⊢ ( ·𝑖OLD ‘ 𝑤 ) |
21 |
16
|
cv |
⊢ 𝑦 |
22 |
18 21 20
|
co |
⊢ ( ( 𝑡 ‘ 𝑥 ) ( ·𝑖OLD ‘ 𝑤 ) 𝑦 ) |
23 |
8 19
|
cfv |
⊢ ( ·𝑖OLD ‘ 𝑢 ) |
24 |
21 13
|
cfv |
⊢ ( 𝑠 ‘ 𝑦 ) |
25 |
17 24 23
|
co |
⊢ ( 𝑥 ( ·𝑖OLD ‘ 𝑢 ) ( 𝑠 ‘ 𝑦 ) ) |
26 |
22 25
|
wceq |
⊢ ( ( 𝑡 ‘ 𝑥 ) ( ·𝑖OLD ‘ 𝑤 ) 𝑦 ) = ( 𝑥 ( ·𝑖OLD ‘ 𝑢 ) ( 𝑠 ‘ 𝑦 ) ) |
27 |
26 16 11
|
wral |
⊢ ∀ 𝑦 ∈ ( BaseSet ‘ 𝑤 ) ( ( 𝑡 ‘ 𝑥 ) ( ·𝑖OLD ‘ 𝑤 ) 𝑦 ) = ( 𝑥 ( ·𝑖OLD ‘ 𝑢 ) ( 𝑠 ‘ 𝑦 ) ) |
28 |
27 15 9
|
wral |
⊢ ∀ 𝑥 ∈ ( BaseSet ‘ 𝑢 ) ∀ 𝑦 ∈ ( BaseSet ‘ 𝑤 ) ( ( 𝑡 ‘ 𝑥 ) ( ·𝑖OLD ‘ 𝑤 ) 𝑦 ) = ( 𝑥 ( ·𝑖OLD ‘ 𝑢 ) ( 𝑠 ‘ 𝑦 ) ) |
29 |
12 14 28
|
w3a |
⊢ ( 𝑡 : ( BaseSet ‘ 𝑢 ) ⟶ ( BaseSet ‘ 𝑤 ) ∧ 𝑠 : ( BaseSet ‘ 𝑤 ) ⟶ ( BaseSet ‘ 𝑢 ) ∧ ∀ 𝑥 ∈ ( BaseSet ‘ 𝑢 ) ∀ 𝑦 ∈ ( BaseSet ‘ 𝑤 ) ( ( 𝑡 ‘ 𝑥 ) ( ·𝑖OLD ‘ 𝑤 ) 𝑦 ) = ( 𝑥 ( ·𝑖OLD ‘ 𝑢 ) ( 𝑠 ‘ 𝑦 ) ) ) |
30 |
29 4 5
|
copab |
⊢ { 〈 𝑡 , 𝑠 〉 ∣ ( 𝑡 : ( BaseSet ‘ 𝑢 ) ⟶ ( BaseSet ‘ 𝑤 ) ∧ 𝑠 : ( BaseSet ‘ 𝑤 ) ⟶ ( BaseSet ‘ 𝑢 ) ∧ ∀ 𝑥 ∈ ( BaseSet ‘ 𝑢 ) ∀ 𝑦 ∈ ( BaseSet ‘ 𝑤 ) ( ( 𝑡 ‘ 𝑥 ) ( ·𝑖OLD ‘ 𝑤 ) 𝑦 ) = ( 𝑥 ( ·𝑖OLD ‘ 𝑢 ) ( 𝑠 ‘ 𝑦 ) ) ) } |
31 |
1 3 2 2 30
|
cmpo |
⊢ ( 𝑢 ∈ NrmCVec , 𝑤 ∈ NrmCVec ↦ { 〈 𝑡 , 𝑠 〉 ∣ ( 𝑡 : ( BaseSet ‘ 𝑢 ) ⟶ ( BaseSet ‘ 𝑤 ) ∧ 𝑠 : ( BaseSet ‘ 𝑤 ) ⟶ ( BaseSet ‘ 𝑢 ) ∧ ∀ 𝑥 ∈ ( BaseSet ‘ 𝑢 ) ∀ 𝑦 ∈ ( BaseSet ‘ 𝑤 ) ( ( 𝑡 ‘ 𝑥 ) ( ·𝑖OLD ‘ 𝑤 ) 𝑦 ) = ( 𝑥 ( ·𝑖OLD ‘ 𝑢 ) ( 𝑠 ‘ 𝑦 ) ) ) } ) |
32 |
0 31
|
wceq |
⊢ adj = ( 𝑢 ∈ NrmCVec , 𝑤 ∈ NrmCVec ↦ { 〈 𝑡 , 𝑠 〉 ∣ ( 𝑡 : ( BaseSet ‘ 𝑢 ) ⟶ ( BaseSet ‘ 𝑤 ) ∧ 𝑠 : ( BaseSet ‘ 𝑤 ) ⟶ ( BaseSet ‘ 𝑢 ) ∧ ∀ 𝑥 ∈ ( BaseSet ‘ 𝑢 ) ∀ 𝑦 ∈ ( BaseSet ‘ 𝑤 ) ( ( 𝑡 ‘ 𝑥 ) ( ·𝑖OLD ‘ 𝑤 ) 𝑦 ) = ( 𝑥 ( ·𝑖OLD ‘ 𝑢 ) ( 𝑠 ‘ 𝑦 ) ) ) } ) |