Metamath Proof Explorer


Definition df-aj

Description: Define the adjoint of an operator (if it exists). The domain of U adj W is the set of all operators from U to W that have an adjoint. Definition 3.9-1 of Kreyszig p. 196, although we don't require that U and W be Hilbert spaces nor that the operators be linear. Although we define it for any normed vector space for convenience, the definition is meaningful only for inner product spaces. (Contributed by NM, 25-Jan-2008) (New usage is discouraged.)

Ref Expression
Assertion df-aj adj = ( 𝑢 ∈ NrmCVec , 𝑤 ∈ NrmCVec ↦ { ⟨ 𝑡 , 𝑠 ⟩ ∣ ( 𝑡 : ( BaseSet ‘ 𝑢 ) ⟶ ( BaseSet ‘ 𝑤 ) ∧ 𝑠 : ( BaseSet ‘ 𝑤 ) ⟶ ( BaseSet ‘ 𝑢 ) ∧ ∀ 𝑥 ∈ ( BaseSet ‘ 𝑢 ) ∀ 𝑦 ∈ ( BaseSet ‘ 𝑤 ) ( ( 𝑡𝑥 ) ( ·𝑖OLD𝑤 ) 𝑦 ) = ( 𝑥 ( ·𝑖OLD𝑢 ) ( 𝑠𝑦 ) ) ) } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 caj adj
1 vu 𝑢
2 cnv NrmCVec
3 vw 𝑤
4 vt 𝑡
5 vs 𝑠
6 4 cv 𝑡
7 cba BaseSet
8 1 cv 𝑢
9 8 7 cfv ( BaseSet ‘ 𝑢 )
10 3 cv 𝑤
11 10 7 cfv ( BaseSet ‘ 𝑤 )
12 9 11 6 wf 𝑡 : ( BaseSet ‘ 𝑢 ) ⟶ ( BaseSet ‘ 𝑤 )
13 5 cv 𝑠
14 11 9 13 wf 𝑠 : ( BaseSet ‘ 𝑤 ) ⟶ ( BaseSet ‘ 𝑢 )
15 vx 𝑥
16 vy 𝑦
17 15 cv 𝑥
18 17 6 cfv ( 𝑡𝑥 )
19 cdip ·𝑖OLD
20 10 19 cfv ( ·𝑖OLD𝑤 )
21 16 cv 𝑦
22 18 21 20 co ( ( 𝑡𝑥 ) ( ·𝑖OLD𝑤 ) 𝑦 )
23 8 19 cfv ( ·𝑖OLD𝑢 )
24 21 13 cfv ( 𝑠𝑦 )
25 17 24 23 co ( 𝑥 ( ·𝑖OLD𝑢 ) ( 𝑠𝑦 ) )
26 22 25 wceq ( ( 𝑡𝑥 ) ( ·𝑖OLD𝑤 ) 𝑦 ) = ( 𝑥 ( ·𝑖OLD𝑢 ) ( 𝑠𝑦 ) )
27 26 16 11 wral 𝑦 ∈ ( BaseSet ‘ 𝑤 ) ( ( 𝑡𝑥 ) ( ·𝑖OLD𝑤 ) 𝑦 ) = ( 𝑥 ( ·𝑖OLD𝑢 ) ( 𝑠𝑦 ) )
28 27 15 9 wral 𝑥 ∈ ( BaseSet ‘ 𝑢 ) ∀ 𝑦 ∈ ( BaseSet ‘ 𝑤 ) ( ( 𝑡𝑥 ) ( ·𝑖OLD𝑤 ) 𝑦 ) = ( 𝑥 ( ·𝑖OLD𝑢 ) ( 𝑠𝑦 ) )
29 12 14 28 w3a ( 𝑡 : ( BaseSet ‘ 𝑢 ) ⟶ ( BaseSet ‘ 𝑤 ) ∧ 𝑠 : ( BaseSet ‘ 𝑤 ) ⟶ ( BaseSet ‘ 𝑢 ) ∧ ∀ 𝑥 ∈ ( BaseSet ‘ 𝑢 ) ∀ 𝑦 ∈ ( BaseSet ‘ 𝑤 ) ( ( 𝑡𝑥 ) ( ·𝑖OLD𝑤 ) 𝑦 ) = ( 𝑥 ( ·𝑖OLD𝑢 ) ( 𝑠𝑦 ) ) )
30 29 4 5 copab { ⟨ 𝑡 , 𝑠 ⟩ ∣ ( 𝑡 : ( BaseSet ‘ 𝑢 ) ⟶ ( BaseSet ‘ 𝑤 ) ∧ 𝑠 : ( BaseSet ‘ 𝑤 ) ⟶ ( BaseSet ‘ 𝑢 ) ∧ ∀ 𝑥 ∈ ( BaseSet ‘ 𝑢 ) ∀ 𝑦 ∈ ( BaseSet ‘ 𝑤 ) ( ( 𝑡𝑥 ) ( ·𝑖OLD𝑤 ) 𝑦 ) = ( 𝑥 ( ·𝑖OLD𝑢 ) ( 𝑠𝑦 ) ) ) }
31 1 3 2 2 30 cmpo ( 𝑢 ∈ NrmCVec , 𝑤 ∈ NrmCVec ↦ { ⟨ 𝑡 , 𝑠 ⟩ ∣ ( 𝑡 : ( BaseSet ‘ 𝑢 ) ⟶ ( BaseSet ‘ 𝑤 ) ∧ 𝑠 : ( BaseSet ‘ 𝑤 ) ⟶ ( BaseSet ‘ 𝑢 ) ∧ ∀ 𝑥 ∈ ( BaseSet ‘ 𝑢 ) ∀ 𝑦 ∈ ( BaseSet ‘ 𝑤 ) ( ( 𝑡𝑥 ) ( ·𝑖OLD𝑤 ) 𝑦 ) = ( 𝑥 ( ·𝑖OLD𝑢 ) ( 𝑠𝑦 ) ) ) } )
32 0 31 wceq adj = ( 𝑢 ∈ NrmCVec , 𝑤 ∈ NrmCVec ↦ { ⟨ 𝑡 , 𝑠 ⟩ ∣ ( 𝑡 : ( BaseSet ‘ 𝑢 ) ⟶ ( BaseSet ‘ 𝑤 ) ∧ 𝑠 : ( BaseSet ‘ 𝑤 ) ⟶ ( BaseSet ‘ 𝑢 ) ∧ ∀ 𝑥 ∈ ( BaseSet ‘ 𝑢 ) ∀ 𝑦 ∈ ( BaseSet ‘ 𝑤 ) ( ( 𝑡𝑥 ) ( ·𝑖OLD𝑤 ) 𝑦 ) = ( 𝑥 ( ·𝑖OLD𝑢 ) ( 𝑠𝑦 ) ) ) } )