| Step | Hyp | Ref | Expression | 
						
							| 0 |  | cascl | ⊢ algSc | 
						
							| 1 |  | vw | ⊢ 𝑤 | 
						
							| 2 |  | cvv | ⊢ V | 
						
							| 3 |  | vx | ⊢ 𝑥 | 
						
							| 4 |  | cbs | ⊢ Base | 
						
							| 5 |  | csca | ⊢ Scalar | 
						
							| 6 | 1 | cv | ⊢ 𝑤 | 
						
							| 7 | 6 5 | cfv | ⊢ ( Scalar ‘ 𝑤 ) | 
						
							| 8 | 7 4 | cfv | ⊢ ( Base ‘ ( Scalar ‘ 𝑤 ) ) | 
						
							| 9 | 3 | cv | ⊢ 𝑥 | 
						
							| 10 |  | cvsca | ⊢  ·𝑠 | 
						
							| 11 | 6 10 | cfv | ⊢ (  ·𝑠  ‘ 𝑤 ) | 
						
							| 12 |  | cur | ⊢ 1r | 
						
							| 13 | 6 12 | cfv | ⊢ ( 1r ‘ 𝑤 ) | 
						
							| 14 | 9 13 11 | co | ⊢ ( 𝑥 (  ·𝑠  ‘ 𝑤 ) ( 1r ‘ 𝑤 ) ) | 
						
							| 15 | 3 8 14 | cmpt | ⊢ ( 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑤 ) )  ↦  ( 𝑥 (  ·𝑠  ‘ 𝑤 ) ( 1r ‘ 𝑤 ) ) ) | 
						
							| 16 | 1 2 15 | cmpt | ⊢ ( 𝑤  ∈  V  ↦  ( 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑤 ) )  ↦  ( 𝑥 (  ·𝑠  ‘ 𝑤 ) ( 1r ‘ 𝑤 ) ) ) ) | 
						
							| 17 | 0 16 | wceq | ⊢ algSc  =  ( 𝑤  ∈  V  ↦  ( 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑤 ) )  ↦  ( 𝑥 (  ·𝑠  ‘ 𝑤 ) ( 1r ‘ 𝑤 ) ) ) ) |