Step |
Hyp |
Ref |
Expression |
0 |
|
cascl |
⊢ algSc |
1 |
|
vw |
⊢ 𝑤 |
2 |
|
cvv |
⊢ V |
3 |
|
vx |
⊢ 𝑥 |
4 |
|
cbs |
⊢ Base |
5 |
|
csca |
⊢ Scalar |
6 |
1
|
cv |
⊢ 𝑤 |
7 |
6 5
|
cfv |
⊢ ( Scalar ‘ 𝑤 ) |
8 |
7 4
|
cfv |
⊢ ( Base ‘ ( Scalar ‘ 𝑤 ) ) |
9 |
3
|
cv |
⊢ 𝑥 |
10 |
|
cvsca |
⊢ ·𝑠 |
11 |
6 10
|
cfv |
⊢ ( ·𝑠 ‘ 𝑤 ) |
12 |
|
cur |
⊢ 1r |
13 |
6 12
|
cfv |
⊢ ( 1r ‘ 𝑤 ) |
14 |
9 13 11
|
co |
⊢ ( 𝑥 ( ·𝑠 ‘ 𝑤 ) ( 1r ‘ 𝑤 ) ) |
15 |
3 8 14
|
cmpt |
⊢ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑤 ) ) ↦ ( 𝑥 ( ·𝑠 ‘ 𝑤 ) ( 1r ‘ 𝑤 ) ) ) |
16 |
1 2 15
|
cmpt |
⊢ ( 𝑤 ∈ V ↦ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑤 ) ) ↦ ( 𝑥 ( ·𝑠 ‘ 𝑤 ) ( 1r ‘ 𝑤 ) ) ) ) |
17 |
0 16
|
wceq |
⊢ algSc = ( 𝑤 ∈ V ↦ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑤 ) ) ↦ ( 𝑥 ( ·𝑠 ‘ 𝑤 ) ( 1r ‘ 𝑤 ) ) ) ) |