Metamath Proof Explorer


Definition df-ascl

Description: Every unital algebra contains a canonical homomorphic image of its ring of scalars as scalar multiples of the unit. This names the homomorphism. (Contributed by Mario Carneiro, 8-Mar-2015)

Ref Expression
Assertion df-ascl algSc = ( 𝑤 ∈ V ↦ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑤 ) ) ↦ ( 𝑥 ( ·𝑠𝑤 ) ( 1r𝑤 ) ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cascl algSc
1 vw 𝑤
2 cvv V
3 vx 𝑥
4 cbs Base
5 csca Scalar
6 1 cv 𝑤
7 6 5 cfv ( Scalar ‘ 𝑤 )
8 7 4 cfv ( Base ‘ ( Scalar ‘ 𝑤 ) )
9 3 cv 𝑥
10 cvsca ·𝑠
11 6 10 cfv ( ·𝑠𝑤 )
12 cur 1r
13 6 12 cfv ( 1r𝑤 )
14 9 13 11 co ( 𝑥 ( ·𝑠𝑤 ) ( 1r𝑤 ) )
15 3 8 14 cmpt ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑤 ) ) ↦ ( 𝑥 ( ·𝑠𝑤 ) ( 1r𝑤 ) ) )
16 1 2 15 cmpt ( 𝑤 ∈ V ↦ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑤 ) ) ↦ ( 𝑥 ( ·𝑠𝑤 ) ( 1r𝑤 ) ) ) )
17 0 16 wceq algSc = ( 𝑤 ∈ V ↦ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑤 ) ) ↦ ( 𝑥 ( ·𝑠𝑤 ) ( 1r𝑤 ) ) ) )