Step |
Hyp |
Ref |
Expression |
0 |
|
casp |
⊢ AlgSpan |
1 |
|
vw |
⊢ 𝑤 |
2 |
|
casa |
⊢ AssAlg |
3 |
|
vs |
⊢ 𝑠 |
4 |
|
cbs |
⊢ Base |
5 |
1
|
cv |
⊢ 𝑤 |
6 |
5 4
|
cfv |
⊢ ( Base ‘ 𝑤 ) |
7 |
6
|
cpw |
⊢ 𝒫 ( Base ‘ 𝑤 ) |
8 |
|
vt |
⊢ 𝑡 |
9 |
|
csubrg |
⊢ SubRing |
10 |
5 9
|
cfv |
⊢ ( SubRing ‘ 𝑤 ) |
11 |
|
clss |
⊢ LSubSp |
12 |
5 11
|
cfv |
⊢ ( LSubSp ‘ 𝑤 ) |
13 |
10 12
|
cin |
⊢ ( ( SubRing ‘ 𝑤 ) ∩ ( LSubSp ‘ 𝑤 ) ) |
14 |
3
|
cv |
⊢ 𝑠 |
15 |
8
|
cv |
⊢ 𝑡 |
16 |
14 15
|
wss |
⊢ 𝑠 ⊆ 𝑡 |
17 |
16 8 13
|
crab |
⊢ { 𝑡 ∈ ( ( SubRing ‘ 𝑤 ) ∩ ( LSubSp ‘ 𝑤 ) ) ∣ 𝑠 ⊆ 𝑡 } |
18 |
17
|
cint |
⊢ ∩ { 𝑡 ∈ ( ( SubRing ‘ 𝑤 ) ∩ ( LSubSp ‘ 𝑤 ) ) ∣ 𝑠 ⊆ 𝑡 } |
19 |
3 7 18
|
cmpt |
⊢ ( 𝑠 ∈ 𝒫 ( Base ‘ 𝑤 ) ↦ ∩ { 𝑡 ∈ ( ( SubRing ‘ 𝑤 ) ∩ ( LSubSp ‘ 𝑤 ) ) ∣ 𝑠 ⊆ 𝑡 } ) |
20 |
1 2 19
|
cmpt |
⊢ ( 𝑤 ∈ AssAlg ↦ ( 𝑠 ∈ 𝒫 ( Base ‘ 𝑤 ) ↦ ∩ { 𝑡 ∈ ( ( SubRing ‘ 𝑤 ) ∩ ( LSubSp ‘ 𝑤 ) ) ∣ 𝑠 ⊆ 𝑡 } ) ) |
21 |
0 20
|
wceq |
⊢ AlgSpan = ( 𝑤 ∈ AssAlg ↦ ( 𝑠 ∈ 𝒫 ( Base ‘ 𝑤 ) ↦ ∩ { 𝑡 ∈ ( ( SubRing ‘ 𝑤 ) ∩ ( LSubSp ‘ 𝑤 ) ) ∣ 𝑠 ⊆ 𝑡 } ) ) |