Metamath Proof Explorer


Definition df-asp

Description: Define the algebraic span of a set of vectors in an algebra. (Contributed by Mario Carneiro, 7-Jan-2015)

Ref Expression
Assertion df-asp AlgSpan = ( 𝑤 ∈ AssAlg ↦ ( 𝑠 ∈ 𝒫 ( Base ‘ 𝑤 ) ↦ { 𝑡 ∈ ( ( SubRing ‘ 𝑤 ) ∩ ( LSubSp ‘ 𝑤 ) ) ∣ 𝑠𝑡 } ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 casp AlgSpan
1 vw 𝑤
2 casa AssAlg
3 vs 𝑠
4 cbs Base
5 1 cv 𝑤
6 5 4 cfv ( Base ‘ 𝑤 )
7 6 cpw 𝒫 ( Base ‘ 𝑤 )
8 vt 𝑡
9 csubrg SubRing
10 5 9 cfv ( SubRing ‘ 𝑤 )
11 clss LSubSp
12 5 11 cfv ( LSubSp ‘ 𝑤 )
13 10 12 cin ( ( SubRing ‘ 𝑤 ) ∩ ( LSubSp ‘ 𝑤 ) )
14 3 cv 𝑠
15 8 cv 𝑡
16 14 15 wss 𝑠𝑡
17 16 8 13 crab { 𝑡 ∈ ( ( SubRing ‘ 𝑤 ) ∩ ( LSubSp ‘ 𝑤 ) ) ∣ 𝑠𝑡 }
18 17 cint { 𝑡 ∈ ( ( SubRing ‘ 𝑤 ) ∩ ( LSubSp ‘ 𝑤 ) ) ∣ 𝑠𝑡 }
19 3 7 18 cmpt ( 𝑠 ∈ 𝒫 ( Base ‘ 𝑤 ) ↦ { 𝑡 ∈ ( ( SubRing ‘ 𝑤 ) ∩ ( LSubSp ‘ 𝑤 ) ) ∣ 𝑠𝑡 } )
20 1 2 19 cmpt ( 𝑤 ∈ AssAlg ↦ ( 𝑠 ∈ 𝒫 ( Base ‘ 𝑤 ) ↦ { 𝑡 ∈ ( ( SubRing ‘ 𝑤 ) ∩ ( LSubSp ‘ 𝑤 ) ) ∣ 𝑠𝑡 } ) )
21 0 20 wceq AlgSpan = ( 𝑤 ∈ AssAlg ↦ ( 𝑠 ∈ 𝒫 ( Base ‘ 𝑤 ) ↦ { 𝑡 ∈ ( ( SubRing ‘ 𝑤 ) ∩ ( LSubSp ‘ 𝑤 ) ) ∣ 𝑠𝑡 } ) )