Metamath Proof Explorer


Definition df-ass

Description: A device to add associativity to various sorts of internal operations. The definition is meaningful when g is a magma at least. (Contributed by FL, 1-Nov-2009) (New usage is discouraged.)

Ref Expression
Assertion df-ass Ass = { 𝑔 ∣ ∀ 𝑥 ∈ dom dom 𝑔𝑦 ∈ dom dom 𝑔𝑧 ∈ dom dom 𝑔 ( ( 𝑥 𝑔 𝑦 ) 𝑔 𝑧 ) = ( 𝑥 𝑔 ( 𝑦 𝑔 𝑧 ) ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cass Ass
1 vg 𝑔
2 vx 𝑥
3 1 cv 𝑔
4 3 cdm dom 𝑔
5 4 cdm dom dom 𝑔
6 vy 𝑦
7 vz 𝑧
8 2 cv 𝑥
9 6 cv 𝑦
10 8 9 3 co ( 𝑥 𝑔 𝑦 )
11 7 cv 𝑧
12 10 11 3 co ( ( 𝑥 𝑔 𝑦 ) 𝑔 𝑧 )
13 9 11 3 co ( 𝑦 𝑔 𝑧 )
14 8 13 3 co ( 𝑥 𝑔 ( 𝑦 𝑔 𝑧 ) )
15 12 14 wceq ( ( 𝑥 𝑔 𝑦 ) 𝑔 𝑧 ) = ( 𝑥 𝑔 ( 𝑦 𝑔 𝑧 ) )
16 15 7 5 wral 𝑧 ∈ dom dom 𝑔 ( ( 𝑥 𝑔 𝑦 ) 𝑔 𝑧 ) = ( 𝑥 𝑔 ( 𝑦 𝑔 𝑧 ) )
17 16 6 5 wral 𝑦 ∈ dom dom 𝑔𝑧 ∈ dom dom 𝑔 ( ( 𝑥 𝑔 𝑦 ) 𝑔 𝑧 ) = ( 𝑥 𝑔 ( 𝑦 𝑔 𝑧 ) )
18 17 2 5 wral 𝑥 ∈ dom dom 𝑔𝑦 ∈ dom dom 𝑔𝑧 ∈ dom dom 𝑔 ( ( 𝑥 𝑔 𝑦 ) 𝑔 𝑧 ) = ( 𝑥 𝑔 ( 𝑦 𝑔 𝑧 ) )
19 18 1 cab { 𝑔 ∣ ∀ 𝑥 ∈ dom dom 𝑔𝑦 ∈ dom dom 𝑔𝑧 ∈ dom dom 𝑔 ( ( 𝑥 𝑔 𝑦 ) 𝑔 𝑧 ) = ( 𝑥 𝑔 ( 𝑦 𝑔 𝑧 ) ) }
20 0 19 wceq Ass = { 𝑔 ∣ ∀ 𝑥 ∈ dom dom 𝑔𝑦 ∈ dom dom 𝑔𝑧 ∈ dom dom 𝑔 ( ( 𝑥 𝑔 𝑦 ) 𝑔 𝑧 ) = ( 𝑥 𝑔 ( 𝑦 𝑔 𝑧 ) ) }