Step |
Hyp |
Ref |
Expression |
0 |
|
cass |
⊢ Ass |
1 |
|
vg |
⊢ 𝑔 |
2 |
|
vx |
⊢ 𝑥 |
3 |
1
|
cv |
⊢ 𝑔 |
4 |
3
|
cdm |
⊢ dom 𝑔 |
5 |
4
|
cdm |
⊢ dom dom 𝑔 |
6 |
|
vy |
⊢ 𝑦 |
7 |
|
vz |
⊢ 𝑧 |
8 |
2
|
cv |
⊢ 𝑥 |
9 |
6
|
cv |
⊢ 𝑦 |
10 |
8 9 3
|
co |
⊢ ( 𝑥 𝑔 𝑦 ) |
11 |
7
|
cv |
⊢ 𝑧 |
12 |
10 11 3
|
co |
⊢ ( ( 𝑥 𝑔 𝑦 ) 𝑔 𝑧 ) |
13 |
9 11 3
|
co |
⊢ ( 𝑦 𝑔 𝑧 ) |
14 |
8 13 3
|
co |
⊢ ( 𝑥 𝑔 ( 𝑦 𝑔 𝑧 ) ) |
15 |
12 14
|
wceq |
⊢ ( ( 𝑥 𝑔 𝑦 ) 𝑔 𝑧 ) = ( 𝑥 𝑔 ( 𝑦 𝑔 𝑧 ) ) |
16 |
15 7 5
|
wral |
⊢ ∀ 𝑧 ∈ dom dom 𝑔 ( ( 𝑥 𝑔 𝑦 ) 𝑔 𝑧 ) = ( 𝑥 𝑔 ( 𝑦 𝑔 𝑧 ) ) |
17 |
16 6 5
|
wral |
⊢ ∀ 𝑦 ∈ dom dom 𝑔 ∀ 𝑧 ∈ dom dom 𝑔 ( ( 𝑥 𝑔 𝑦 ) 𝑔 𝑧 ) = ( 𝑥 𝑔 ( 𝑦 𝑔 𝑧 ) ) |
18 |
17 2 5
|
wral |
⊢ ∀ 𝑥 ∈ dom dom 𝑔 ∀ 𝑦 ∈ dom dom 𝑔 ∀ 𝑧 ∈ dom dom 𝑔 ( ( 𝑥 𝑔 𝑦 ) 𝑔 𝑧 ) = ( 𝑥 𝑔 ( 𝑦 𝑔 𝑧 ) ) |
19 |
18 1
|
cab |
⊢ { 𝑔 ∣ ∀ 𝑥 ∈ dom dom 𝑔 ∀ 𝑦 ∈ dom dom 𝑔 ∀ 𝑧 ∈ dom dom 𝑔 ( ( 𝑥 𝑔 𝑦 ) 𝑔 𝑧 ) = ( 𝑥 𝑔 ( 𝑦 𝑔 𝑧 ) ) } |
20 |
0 19
|
wceq |
⊢ Ass = { 𝑔 ∣ ∀ 𝑥 ∈ dom dom 𝑔 ∀ 𝑦 ∈ dom dom 𝑔 ∀ 𝑧 ∈ dom dom 𝑔 ( ( 𝑥 𝑔 𝑦 ) 𝑔 𝑧 ) = ( 𝑥 𝑔 ( 𝑦 𝑔 𝑧 ) ) } |