| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cass |
⊢ Ass |
| 1 |
|
vg |
⊢ 𝑔 |
| 2 |
|
vx |
⊢ 𝑥 |
| 3 |
1
|
cv |
⊢ 𝑔 |
| 4 |
3
|
cdm |
⊢ dom 𝑔 |
| 5 |
4
|
cdm |
⊢ dom dom 𝑔 |
| 6 |
|
vy |
⊢ 𝑦 |
| 7 |
|
vz |
⊢ 𝑧 |
| 8 |
2
|
cv |
⊢ 𝑥 |
| 9 |
6
|
cv |
⊢ 𝑦 |
| 10 |
8 9 3
|
co |
⊢ ( 𝑥 𝑔 𝑦 ) |
| 11 |
7
|
cv |
⊢ 𝑧 |
| 12 |
10 11 3
|
co |
⊢ ( ( 𝑥 𝑔 𝑦 ) 𝑔 𝑧 ) |
| 13 |
9 11 3
|
co |
⊢ ( 𝑦 𝑔 𝑧 ) |
| 14 |
8 13 3
|
co |
⊢ ( 𝑥 𝑔 ( 𝑦 𝑔 𝑧 ) ) |
| 15 |
12 14
|
wceq |
⊢ ( ( 𝑥 𝑔 𝑦 ) 𝑔 𝑧 ) = ( 𝑥 𝑔 ( 𝑦 𝑔 𝑧 ) ) |
| 16 |
15 7 5
|
wral |
⊢ ∀ 𝑧 ∈ dom dom 𝑔 ( ( 𝑥 𝑔 𝑦 ) 𝑔 𝑧 ) = ( 𝑥 𝑔 ( 𝑦 𝑔 𝑧 ) ) |
| 17 |
16 6 5
|
wral |
⊢ ∀ 𝑦 ∈ dom dom 𝑔 ∀ 𝑧 ∈ dom dom 𝑔 ( ( 𝑥 𝑔 𝑦 ) 𝑔 𝑧 ) = ( 𝑥 𝑔 ( 𝑦 𝑔 𝑧 ) ) |
| 18 |
17 2 5
|
wral |
⊢ ∀ 𝑥 ∈ dom dom 𝑔 ∀ 𝑦 ∈ dom dom 𝑔 ∀ 𝑧 ∈ dom dom 𝑔 ( ( 𝑥 𝑔 𝑦 ) 𝑔 𝑧 ) = ( 𝑥 𝑔 ( 𝑦 𝑔 𝑧 ) ) |
| 19 |
18 1
|
cab |
⊢ { 𝑔 ∣ ∀ 𝑥 ∈ dom dom 𝑔 ∀ 𝑦 ∈ dom dom 𝑔 ∀ 𝑧 ∈ dom dom 𝑔 ( ( 𝑥 𝑔 𝑦 ) 𝑔 𝑧 ) = ( 𝑥 𝑔 ( 𝑦 𝑔 𝑧 ) ) } |
| 20 |
0 19
|
wceq |
⊢ Ass = { 𝑔 ∣ ∀ 𝑥 ∈ dom dom 𝑔 ∀ 𝑦 ∈ dom dom 𝑔 ∀ 𝑧 ∈ dom dom 𝑔 ( ( 𝑥 𝑔 𝑦 ) 𝑔 𝑧 ) = ( 𝑥 𝑔 ( 𝑦 𝑔 𝑧 ) ) } |