Metamath Proof Explorer


Definition df-assa

Description: Definition of an associative algebra. An associative algebra is a set equipped with a left-module structure on a (commutative) ring, coupled with a multiplicative internal operation on the vectors of the module that is associative and distributive for the additive structure of the left-module (so giving the vectors a ring structure) and that is also bilinear under the scalar product. (Contributed by Mario Carneiro, 29-Dec-2014)

Ref Expression
Assertion df-assa AssAlg = { 𝑤 ∈ ( LMod ∩ Ring ) ∣ [ ( Scalar ‘ 𝑤 ) / 𝑓 ] ( 𝑓 ∈ CRing ∧ ∀ 𝑟 ∈ ( Base ‘ 𝑓 ) ∀ 𝑥 ∈ ( Base ‘ 𝑤 ) ∀ 𝑦 ∈ ( Base ‘ 𝑤 ) [ ( ·𝑠𝑤 ) / 𝑠 ] [ ( .r𝑤 ) / 𝑡 ] ( ( ( 𝑟 𝑠 𝑥 ) 𝑡 𝑦 ) = ( 𝑟 𝑠 ( 𝑥 𝑡 𝑦 ) ) ∧ ( 𝑥 𝑡 ( 𝑟 𝑠 𝑦 ) ) = ( 𝑟 𝑠 ( 𝑥 𝑡 𝑦 ) ) ) ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 casa AssAlg
1 vw 𝑤
2 clmod LMod
3 crg Ring
4 2 3 cin ( LMod ∩ Ring )
5 csca Scalar
6 1 cv 𝑤
7 6 5 cfv ( Scalar ‘ 𝑤 )
8 vf 𝑓
9 8 cv 𝑓
10 ccrg CRing
11 9 10 wcel 𝑓 ∈ CRing
12 vr 𝑟
13 cbs Base
14 9 13 cfv ( Base ‘ 𝑓 )
15 vx 𝑥
16 6 13 cfv ( Base ‘ 𝑤 )
17 vy 𝑦
18 cvsca ·𝑠
19 6 18 cfv ( ·𝑠𝑤 )
20 vs 𝑠
21 cmulr .r
22 6 21 cfv ( .r𝑤 )
23 vt 𝑡
24 12 cv 𝑟
25 20 cv 𝑠
26 15 cv 𝑥
27 24 26 25 co ( 𝑟 𝑠 𝑥 )
28 23 cv 𝑡
29 17 cv 𝑦
30 27 29 28 co ( ( 𝑟 𝑠 𝑥 ) 𝑡 𝑦 )
31 26 29 28 co ( 𝑥 𝑡 𝑦 )
32 24 31 25 co ( 𝑟 𝑠 ( 𝑥 𝑡 𝑦 ) )
33 30 32 wceq ( ( 𝑟 𝑠 𝑥 ) 𝑡 𝑦 ) = ( 𝑟 𝑠 ( 𝑥 𝑡 𝑦 ) )
34 24 29 25 co ( 𝑟 𝑠 𝑦 )
35 26 34 28 co ( 𝑥 𝑡 ( 𝑟 𝑠 𝑦 ) )
36 35 32 wceq ( 𝑥 𝑡 ( 𝑟 𝑠 𝑦 ) ) = ( 𝑟 𝑠 ( 𝑥 𝑡 𝑦 ) )
37 33 36 wa ( ( ( 𝑟 𝑠 𝑥 ) 𝑡 𝑦 ) = ( 𝑟 𝑠 ( 𝑥 𝑡 𝑦 ) ) ∧ ( 𝑥 𝑡 ( 𝑟 𝑠 𝑦 ) ) = ( 𝑟 𝑠 ( 𝑥 𝑡 𝑦 ) ) )
38 37 23 22 wsbc [ ( .r𝑤 ) / 𝑡 ] ( ( ( 𝑟 𝑠 𝑥 ) 𝑡 𝑦 ) = ( 𝑟 𝑠 ( 𝑥 𝑡 𝑦 ) ) ∧ ( 𝑥 𝑡 ( 𝑟 𝑠 𝑦 ) ) = ( 𝑟 𝑠 ( 𝑥 𝑡 𝑦 ) ) )
39 38 20 19 wsbc [ ( ·𝑠𝑤 ) / 𝑠 ] [ ( .r𝑤 ) / 𝑡 ] ( ( ( 𝑟 𝑠 𝑥 ) 𝑡 𝑦 ) = ( 𝑟 𝑠 ( 𝑥 𝑡 𝑦 ) ) ∧ ( 𝑥 𝑡 ( 𝑟 𝑠 𝑦 ) ) = ( 𝑟 𝑠 ( 𝑥 𝑡 𝑦 ) ) )
40 39 17 16 wral 𝑦 ∈ ( Base ‘ 𝑤 ) [ ( ·𝑠𝑤 ) / 𝑠 ] [ ( .r𝑤 ) / 𝑡 ] ( ( ( 𝑟 𝑠 𝑥 ) 𝑡 𝑦 ) = ( 𝑟 𝑠 ( 𝑥 𝑡 𝑦 ) ) ∧ ( 𝑥 𝑡 ( 𝑟 𝑠 𝑦 ) ) = ( 𝑟 𝑠 ( 𝑥 𝑡 𝑦 ) ) )
41 40 15 16 wral 𝑥 ∈ ( Base ‘ 𝑤 ) ∀ 𝑦 ∈ ( Base ‘ 𝑤 ) [ ( ·𝑠𝑤 ) / 𝑠 ] [ ( .r𝑤 ) / 𝑡 ] ( ( ( 𝑟 𝑠 𝑥 ) 𝑡 𝑦 ) = ( 𝑟 𝑠 ( 𝑥 𝑡 𝑦 ) ) ∧ ( 𝑥 𝑡 ( 𝑟 𝑠 𝑦 ) ) = ( 𝑟 𝑠 ( 𝑥 𝑡 𝑦 ) ) )
42 41 12 14 wral 𝑟 ∈ ( Base ‘ 𝑓 ) ∀ 𝑥 ∈ ( Base ‘ 𝑤 ) ∀ 𝑦 ∈ ( Base ‘ 𝑤 ) [ ( ·𝑠𝑤 ) / 𝑠 ] [ ( .r𝑤 ) / 𝑡 ] ( ( ( 𝑟 𝑠 𝑥 ) 𝑡 𝑦 ) = ( 𝑟 𝑠 ( 𝑥 𝑡 𝑦 ) ) ∧ ( 𝑥 𝑡 ( 𝑟 𝑠 𝑦 ) ) = ( 𝑟 𝑠 ( 𝑥 𝑡 𝑦 ) ) )
43 11 42 wa ( 𝑓 ∈ CRing ∧ ∀ 𝑟 ∈ ( Base ‘ 𝑓 ) ∀ 𝑥 ∈ ( Base ‘ 𝑤 ) ∀ 𝑦 ∈ ( Base ‘ 𝑤 ) [ ( ·𝑠𝑤 ) / 𝑠 ] [ ( .r𝑤 ) / 𝑡 ] ( ( ( 𝑟 𝑠 𝑥 ) 𝑡 𝑦 ) = ( 𝑟 𝑠 ( 𝑥 𝑡 𝑦 ) ) ∧ ( 𝑥 𝑡 ( 𝑟 𝑠 𝑦 ) ) = ( 𝑟 𝑠 ( 𝑥 𝑡 𝑦 ) ) ) )
44 43 8 7 wsbc [ ( Scalar ‘ 𝑤 ) / 𝑓 ] ( 𝑓 ∈ CRing ∧ ∀ 𝑟 ∈ ( Base ‘ 𝑓 ) ∀ 𝑥 ∈ ( Base ‘ 𝑤 ) ∀ 𝑦 ∈ ( Base ‘ 𝑤 ) [ ( ·𝑠𝑤 ) / 𝑠 ] [ ( .r𝑤 ) / 𝑡 ] ( ( ( 𝑟 𝑠 𝑥 ) 𝑡 𝑦 ) = ( 𝑟 𝑠 ( 𝑥 𝑡 𝑦 ) ) ∧ ( 𝑥 𝑡 ( 𝑟 𝑠 𝑦 ) ) = ( 𝑟 𝑠 ( 𝑥 𝑡 𝑦 ) ) ) )
45 44 1 4 crab { 𝑤 ∈ ( LMod ∩ Ring ) ∣ [ ( Scalar ‘ 𝑤 ) / 𝑓 ] ( 𝑓 ∈ CRing ∧ ∀ 𝑟 ∈ ( Base ‘ 𝑓 ) ∀ 𝑥 ∈ ( Base ‘ 𝑤 ) ∀ 𝑦 ∈ ( Base ‘ 𝑤 ) [ ( ·𝑠𝑤 ) / 𝑠 ] [ ( .r𝑤 ) / 𝑡 ] ( ( ( 𝑟 𝑠 𝑥 ) 𝑡 𝑦 ) = ( 𝑟 𝑠 ( 𝑥 𝑡 𝑦 ) ) ∧ ( 𝑥 𝑡 ( 𝑟 𝑠 𝑦 ) ) = ( 𝑟 𝑠 ( 𝑥 𝑡 𝑦 ) ) ) ) }
46 0 45 wceq AssAlg = { 𝑤 ∈ ( LMod ∩ Ring ) ∣ [ ( Scalar ‘ 𝑤 ) / 𝑓 ] ( 𝑓 ∈ CRing ∧ ∀ 𝑟 ∈ ( Base ‘ 𝑓 ) ∀ 𝑥 ∈ ( Base ‘ 𝑤 ) ∀ 𝑦 ∈ ( Base ‘ 𝑤 ) [ ( ·𝑠𝑤 ) / 𝑠 ] [ ( .r𝑤 ) / 𝑡 ] ( ( ( 𝑟 𝑠 𝑥 ) 𝑡 𝑦 ) = ( 𝑟 𝑠 ( 𝑥 𝑡 𝑦 ) ) ∧ ( 𝑥 𝑡 ( 𝑟 𝑠 𝑦 ) ) = ( 𝑟 𝑠 ( 𝑥 𝑡 𝑦 ) ) ) ) }