Step |
Hyp |
Ref |
Expression |
0 |
|
casa |
⊢ AssAlg |
1 |
|
vw |
⊢ 𝑤 |
2 |
|
clmod |
⊢ LMod |
3 |
|
crg |
⊢ Ring |
4 |
2 3
|
cin |
⊢ ( LMod ∩ Ring ) |
5 |
|
csca |
⊢ Scalar |
6 |
1
|
cv |
⊢ 𝑤 |
7 |
6 5
|
cfv |
⊢ ( Scalar ‘ 𝑤 ) |
8 |
|
vf |
⊢ 𝑓 |
9 |
8
|
cv |
⊢ 𝑓 |
10 |
|
ccrg |
⊢ CRing |
11 |
9 10
|
wcel |
⊢ 𝑓 ∈ CRing |
12 |
|
vr |
⊢ 𝑟 |
13 |
|
cbs |
⊢ Base |
14 |
9 13
|
cfv |
⊢ ( Base ‘ 𝑓 ) |
15 |
|
vx |
⊢ 𝑥 |
16 |
6 13
|
cfv |
⊢ ( Base ‘ 𝑤 ) |
17 |
|
vy |
⊢ 𝑦 |
18 |
|
cvsca |
⊢ ·𝑠 |
19 |
6 18
|
cfv |
⊢ ( ·𝑠 ‘ 𝑤 ) |
20 |
|
vs |
⊢ 𝑠 |
21 |
|
cmulr |
⊢ .r |
22 |
6 21
|
cfv |
⊢ ( .r ‘ 𝑤 ) |
23 |
|
vt |
⊢ 𝑡 |
24 |
12
|
cv |
⊢ 𝑟 |
25 |
20
|
cv |
⊢ 𝑠 |
26 |
15
|
cv |
⊢ 𝑥 |
27 |
24 26 25
|
co |
⊢ ( 𝑟 𝑠 𝑥 ) |
28 |
23
|
cv |
⊢ 𝑡 |
29 |
17
|
cv |
⊢ 𝑦 |
30 |
27 29 28
|
co |
⊢ ( ( 𝑟 𝑠 𝑥 ) 𝑡 𝑦 ) |
31 |
26 29 28
|
co |
⊢ ( 𝑥 𝑡 𝑦 ) |
32 |
24 31 25
|
co |
⊢ ( 𝑟 𝑠 ( 𝑥 𝑡 𝑦 ) ) |
33 |
30 32
|
wceq |
⊢ ( ( 𝑟 𝑠 𝑥 ) 𝑡 𝑦 ) = ( 𝑟 𝑠 ( 𝑥 𝑡 𝑦 ) ) |
34 |
24 29 25
|
co |
⊢ ( 𝑟 𝑠 𝑦 ) |
35 |
26 34 28
|
co |
⊢ ( 𝑥 𝑡 ( 𝑟 𝑠 𝑦 ) ) |
36 |
35 32
|
wceq |
⊢ ( 𝑥 𝑡 ( 𝑟 𝑠 𝑦 ) ) = ( 𝑟 𝑠 ( 𝑥 𝑡 𝑦 ) ) |
37 |
33 36
|
wa |
⊢ ( ( ( 𝑟 𝑠 𝑥 ) 𝑡 𝑦 ) = ( 𝑟 𝑠 ( 𝑥 𝑡 𝑦 ) ) ∧ ( 𝑥 𝑡 ( 𝑟 𝑠 𝑦 ) ) = ( 𝑟 𝑠 ( 𝑥 𝑡 𝑦 ) ) ) |
38 |
37 23 22
|
wsbc |
⊢ [ ( .r ‘ 𝑤 ) / 𝑡 ] ( ( ( 𝑟 𝑠 𝑥 ) 𝑡 𝑦 ) = ( 𝑟 𝑠 ( 𝑥 𝑡 𝑦 ) ) ∧ ( 𝑥 𝑡 ( 𝑟 𝑠 𝑦 ) ) = ( 𝑟 𝑠 ( 𝑥 𝑡 𝑦 ) ) ) |
39 |
38 20 19
|
wsbc |
⊢ [ ( ·𝑠 ‘ 𝑤 ) / 𝑠 ] [ ( .r ‘ 𝑤 ) / 𝑡 ] ( ( ( 𝑟 𝑠 𝑥 ) 𝑡 𝑦 ) = ( 𝑟 𝑠 ( 𝑥 𝑡 𝑦 ) ) ∧ ( 𝑥 𝑡 ( 𝑟 𝑠 𝑦 ) ) = ( 𝑟 𝑠 ( 𝑥 𝑡 𝑦 ) ) ) |
40 |
39 17 16
|
wral |
⊢ ∀ 𝑦 ∈ ( Base ‘ 𝑤 ) [ ( ·𝑠 ‘ 𝑤 ) / 𝑠 ] [ ( .r ‘ 𝑤 ) / 𝑡 ] ( ( ( 𝑟 𝑠 𝑥 ) 𝑡 𝑦 ) = ( 𝑟 𝑠 ( 𝑥 𝑡 𝑦 ) ) ∧ ( 𝑥 𝑡 ( 𝑟 𝑠 𝑦 ) ) = ( 𝑟 𝑠 ( 𝑥 𝑡 𝑦 ) ) ) |
41 |
40 15 16
|
wral |
⊢ ∀ 𝑥 ∈ ( Base ‘ 𝑤 ) ∀ 𝑦 ∈ ( Base ‘ 𝑤 ) [ ( ·𝑠 ‘ 𝑤 ) / 𝑠 ] [ ( .r ‘ 𝑤 ) / 𝑡 ] ( ( ( 𝑟 𝑠 𝑥 ) 𝑡 𝑦 ) = ( 𝑟 𝑠 ( 𝑥 𝑡 𝑦 ) ) ∧ ( 𝑥 𝑡 ( 𝑟 𝑠 𝑦 ) ) = ( 𝑟 𝑠 ( 𝑥 𝑡 𝑦 ) ) ) |
42 |
41 12 14
|
wral |
⊢ ∀ 𝑟 ∈ ( Base ‘ 𝑓 ) ∀ 𝑥 ∈ ( Base ‘ 𝑤 ) ∀ 𝑦 ∈ ( Base ‘ 𝑤 ) [ ( ·𝑠 ‘ 𝑤 ) / 𝑠 ] [ ( .r ‘ 𝑤 ) / 𝑡 ] ( ( ( 𝑟 𝑠 𝑥 ) 𝑡 𝑦 ) = ( 𝑟 𝑠 ( 𝑥 𝑡 𝑦 ) ) ∧ ( 𝑥 𝑡 ( 𝑟 𝑠 𝑦 ) ) = ( 𝑟 𝑠 ( 𝑥 𝑡 𝑦 ) ) ) |
43 |
11 42
|
wa |
⊢ ( 𝑓 ∈ CRing ∧ ∀ 𝑟 ∈ ( Base ‘ 𝑓 ) ∀ 𝑥 ∈ ( Base ‘ 𝑤 ) ∀ 𝑦 ∈ ( Base ‘ 𝑤 ) [ ( ·𝑠 ‘ 𝑤 ) / 𝑠 ] [ ( .r ‘ 𝑤 ) / 𝑡 ] ( ( ( 𝑟 𝑠 𝑥 ) 𝑡 𝑦 ) = ( 𝑟 𝑠 ( 𝑥 𝑡 𝑦 ) ) ∧ ( 𝑥 𝑡 ( 𝑟 𝑠 𝑦 ) ) = ( 𝑟 𝑠 ( 𝑥 𝑡 𝑦 ) ) ) ) |
44 |
43 8 7
|
wsbc |
⊢ [ ( Scalar ‘ 𝑤 ) / 𝑓 ] ( 𝑓 ∈ CRing ∧ ∀ 𝑟 ∈ ( Base ‘ 𝑓 ) ∀ 𝑥 ∈ ( Base ‘ 𝑤 ) ∀ 𝑦 ∈ ( Base ‘ 𝑤 ) [ ( ·𝑠 ‘ 𝑤 ) / 𝑠 ] [ ( .r ‘ 𝑤 ) / 𝑡 ] ( ( ( 𝑟 𝑠 𝑥 ) 𝑡 𝑦 ) = ( 𝑟 𝑠 ( 𝑥 𝑡 𝑦 ) ) ∧ ( 𝑥 𝑡 ( 𝑟 𝑠 𝑦 ) ) = ( 𝑟 𝑠 ( 𝑥 𝑡 𝑦 ) ) ) ) |
45 |
44 1 4
|
crab |
⊢ { 𝑤 ∈ ( LMod ∩ Ring ) ∣ [ ( Scalar ‘ 𝑤 ) / 𝑓 ] ( 𝑓 ∈ CRing ∧ ∀ 𝑟 ∈ ( Base ‘ 𝑓 ) ∀ 𝑥 ∈ ( Base ‘ 𝑤 ) ∀ 𝑦 ∈ ( Base ‘ 𝑤 ) [ ( ·𝑠 ‘ 𝑤 ) / 𝑠 ] [ ( .r ‘ 𝑤 ) / 𝑡 ] ( ( ( 𝑟 𝑠 𝑥 ) 𝑡 𝑦 ) = ( 𝑟 𝑠 ( 𝑥 𝑡 𝑦 ) ) ∧ ( 𝑥 𝑡 ( 𝑟 𝑠 𝑦 ) ) = ( 𝑟 𝑠 ( 𝑥 𝑡 𝑦 ) ) ) ) } |
46 |
0 45
|
wceq |
⊢ AssAlg = { 𝑤 ∈ ( LMod ∩ Ring ) ∣ [ ( Scalar ‘ 𝑤 ) / 𝑓 ] ( 𝑓 ∈ CRing ∧ ∀ 𝑟 ∈ ( Base ‘ 𝑓 ) ∀ 𝑥 ∈ ( Base ‘ 𝑤 ) ∀ 𝑦 ∈ ( Base ‘ 𝑤 ) [ ( ·𝑠 ‘ 𝑤 ) / 𝑠 ] [ ( .r ‘ 𝑤 ) / 𝑡 ] ( ( ( 𝑟 𝑠 𝑥 ) 𝑡 𝑦 ) = ( 𝑟 𝑠 ( 𝑥 𝑡 𝑦 ) ) ∧ ( 𝑥 𝑡 ( 𝑟 𝑠 𝑦 ) ) = ( 𝑟 𝑠 ( 𝑥 𝑡 𝑦 ) ) ) ) } |