Step |
Hyp |
Ref |
Expression |
0 |
|
casa |
⊢ AssAlg |
1 |
|
vw |
⊢ 𝑤 |
2 |
|
clmod |
⊢ LMod |
3 |
|
crg |
⊢ Ring |
4 |
2 3
|
cin |
⊢ ( LMod ∩ Ring ) |
5 |
|
csca |
⊢ Scalar |
6 |
1
|
cv |
⊢ 𝑤 |
7 |
6 5
|
cfv |
⊢ ( Scalar ‘ 𝑤 ) |
8 |
|
vf |
⊢ 𝑓 |
9 |
|
vr |
⊢ 𝑟 |
10 |
|
cbs |
⊢ Base |
11 |
8
|
cv |
⊢ 𝑓 |
12 |
11 10
|
cfv |
⊢ ( Base ‘ 𝑓 ) |
13 |
|
vx |
⊢ 𝑥 |
14 |
6 10
|
cfv |
⊢ ( Base ‘ 𝑤 ) |
15 |
|
vy |
⊢ 𝑦 |
16 |
|
cvsca |
⊢ ·𝑠 |
17 |
6 16
|
cfv |
⊢ ( ·𝑠 ‘ 𝑤 ) |
18 |
|
vs |
⊢ 𝑠 |
19 |
|
cmulr |
⊢ .r |
20 |
6 19
|
cfv |
⊢ ( .r ‘ 𝑤 ) |
21 |
|
vt |
⊢ 𝑡 |
22 |
9
|
cv |
⊢ 𝑟 |
23 |
18
|
cv |
⊢ 𝑠 |
24 |
13
|
cv |
⊢ 𝑥 |
25 |
22 24 23
|
co |
⊢ ( 𝑟 𝑠 𝑥 ) |
26 |
21
|
cv |
⊢ 𝑡 |
27 |
15
|
cv |
⊢ 𝑦 |
28 |
25 27 26
|
co |
⊢ ( ( 𝑟 𝑠 𝑥 ) 𝑡 𝑦 ) |
29 |
24 27 26
|
co |
⊢ ( 𝑥 𝑡 𝑦 ) |
30 |
22 29 23
|
co |
⊢ ( 𝑟 𝑠 ( 𝑥 𝑡 𝑦 ) ) |
31 |
28 30
|
wceq |
⊢ ( ( 𝑟 𝑠 𝑥 ) 𝑡 𝑦 ) = ( 𝑟 𝑠 ( 𝑥 𝑡 𝑦 ) ) |
32 |
22 27 23
|
co |
⊢ ( 𝑟 𝑠 𝑦 ) |
33 |
24 32 26
|
co |
⊢ ( 𝑥 𝑡 ( 𝑟 𝑠 𝑦 ) ) |
34 |
33 30
|
wceq |
⊢ ( 𝑥 𝑡 ( 𝑟 𝑠 𝑦 ) ) = ( 𝑟 𝑠 ( 𝑥 𝑡 𝑦 ) ) |
35 |
31 34
|
wa |
⊢ ( ( ( 𝑟 𝑠 𝑥 ) 𝑡 𝑦 ) = ( 𝑟 𝑠 ( 𝑥 𝑡 𝑦 ) ) ∧ ( 𝑥 𝑡 ( 𝑟 𝑠 𝑦 ) ) = ( 𝑟 𝑠 ( 𝑥 𝑡 𝑦 ) ) ) |
36 |
35 21 20
|
wsbc |
⊢ [ ( .r ‘ 𝑤 ) / 𝑡 ] ( ( ( 𝑟 𝑠 𝑥 ) 𝑡 𝑦 ) = ( 𝑟 𝑠 ( 𝑥 𝑡 𝑦 ) ) ∧ ( 𝑥 𝑡 ( 𝑟 𝑠 𝑦 ) ) = ( 𝑟 𝑠 ( 𝑥 𝑡 𝑦 ) ) ) |
37 |
36 18 17
|
wsbc |
⊢ [ ( ·𝑠 ‘ 𝑤 ) / 𝑠 ] [ ( .r ‘ 𝑤 ) / 𝑡 ] ( ( ( 𝑟 𝑠 𝑥 ) 𝑡 𝑦 ) = ( 𝑟 𝑠 ( 𝑥 𝑡 𝑦 ) ) ∧ ( 𝑥 𝑡 ( 𝑟 𝑠 𝑦 ) ) = ( 𝑟 𝑠 ( 𝑥 𝑡 𝑦 ) ) ) |
38 |
37 15 14
|
wral |
⊢ ∀ 𝑦 ∈ ( Base ‘ 𝑤 ) [ ( ·𝑠 ‘ 𝑤 ) / 𝑠 ] [ ( .r ‘ 𝑤 ) / 𝑡 ] ( ( ( 𝑟 𝑠 𝑥 ) 𝑡 𝑦 ) = ( 𝑟 𝑠 ( 𝑥 𝑡 𝑦 ) ) ∧ ( 𝑥 𝑡 ( 𝑟 𝑠 𝑦 ) ) = ( 𝑟 𝑠 ( 𝑥 𝑡 𝑦 ) ) ) |
39 |
38 13 14
|
wral |
⊢ ∀ 𝑥 ∈ ( Base ‘ 𝑤 ) ∀ 𝑦 ∈ ( Base ‘ 𝑤 ) [ ( ·𝑠 ‘ 𝑤 ) / 𝑠 ] [ ( .r ‘ 𝑤 ) / 𝑡 ] ( ( ( 𝑟 𝑠 𝑥 ) 𝑡 𝑦 ) = ( 𝑟 𝑠 ( 𝑥 𝑡 𝑦 ) ) ∧ ( 𝑥 𝑡 ( 𝑟 𝑠 𝑦 ) ) = ( 𝑟 𝑠 ( 𝑥 𝑡 𝑦 ) ) ) |
40 |
39 9 12
|
wral |
⊢ ∀ 𝑟 ∈ ( Base ‘ 𝑓 ) ∀ 𝑥 ∈ ( Base ‘ 𝑤 ) ∀ 𝑦 ∈ ( Base ‘ 𝑤 ) [ ( ·𝑠 ‘ 𝑤 ) / 𝑠 ] [ ( .r ‘ 𝑤 ) / 𝑡 ] ( ( ( 𝑟 𝑠 𝑥 ) 𝑡 𝑦 ) = ( 𝑟 𝑠 ( 𝑥 𝑡 𝑦 ) ) ∧ ( 𝑥 𝑡 ( 𝑟 𝑠 𝑦 ) ) = ( 𝑟 𝑠 ( 𝑥 𝑡 𝑦 ) ) ) |
41 |
40 8 7
|
wsbc |
⊢ [ ( Scalar ‘ 𝑤 ) / 𝑓 ] ∀ 𝑟 ∈ ( Base ‘ 𝑓 ) ∀ 𝑥 ∈ ( Base ‘ 𝑤 ) ∀ 𝑦 ∈ ( Base ‘ 𝑤 ) [ ( ·𝑠 ‘ 𝑤 ) / 𝑠 ] [ ( .r ‘ 𝑤 ) / 𝑡 ] ( ( ( 𝑟 𝑠 𝑥 ) 𝑡 𝑦 ) = ( 𝑟 𝑠 ( 𝑥 𝑡 𝑦 ) ) ∧ ( 𝑥 𝑡 ( 𝑟 𝑠 𝑦 ) ) = ( 𝑟 𝑠 ( 𝑥 𝑡 𝑦 ) ) ) |
42 |
41 1 4
|
crab |
⊢ { 𝑤 ∈ ( LMod ∩ Ring ) ∣ [ ( Scalar ‘ 𝑤 ) / 𝑓 ] ∀ 𝑟 ∈ ( Base ‘ 𝑓 ) ∀ 𝑥 ∈ ( Base ‘ 𝑤 ) ∀ 𝑦 ∈ ( Base ‘ 𝑤 ) [ ( ·𝑠 ‘ 𝑤 ) / 𝑠 ] [ ( .r ‘ 𝑤 ) / 𝑡 ] ( ( ( 𝑟 𝑠 𝑥 ) 𝑡 𝑦 ) = ( 𝑟 𝑠 ( 𝑥 𝑡 𝑦 ) ) ∧ ( 𝑥 𝑡 ( 𝑟 𝑠 𝑦 ) ) = ( 𝑟 𝑠 ( 𝑥 𝑡 𝑦 ) ) ) } |
43 |
0 42
|
wceq |
⊢ AssAlg = { 𝑤 ∈ ( LMod ∩ Ring ) ∣ [ ( Scalar ‘ 𝑤 ) / 𝑓 ] ∀ 𝑟 ∈ ( Base ‘ 𝑓 ) ∀ 𝑥 ∈ ( Base ‘ 𝑤 ) ∀ 𝑦 ∈ ( Base ‘ 𝑤 ) [ ( ·𝑠 ‘ 𝑤 ) / 𝑠 ] [ ( .r ‘ 𝑤 ) / 𝑡 ] ( ( ( 𝑟 𝑠 𝑥 ) 𝑡 𝑦 ) = ( 𝑟 𝑠 ( 𝑥 𝑡 𝑦 ) ) ∧ ( 𝑥 𝑡 ( 𝑟 𝑠 𝑦 ) ) = ( 𝑟 𝑠 ( 𝑥 𝑡 𝑦 ) ) ) } |