Metamath Proof Explorer


Definition df-atan

Description: Define the arctangent function. See also remarks for df-asin . Unlike arcsin and arccos , this function is not defined everywhere, because tan ( z ) =/= +-i for all z e. CC . For all other z , there is a formula for arctan ( z ) in terms of log , and we take that as the definition. Branch points are at +- i ; branch cuts are on the pure imaginary axis not between -ui and i , which is to say { z e. CC | ( _i x. z ) e. ( -oo , -u 1 ) u. ( 1 , +oo ) } . (Contributed by Mario Carneiro, 31-Mar-2015)

Ref Expression
Assertion df-atan arctan = ( 𝑥 ∈ ( ℂ ∖ { - i , i } ) ↦ ( ( i / 2 ) · ( ( log ‘ ( 1 − ( i · 𝑥 ) ) ) − ( log ‘ ( 1 + ( i · 𝑥 ) ) ) ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 catan arctan
1 vx 𝑥
2 cc
3 ci i
4 3 cneg - i
5 4 3 cpr { - i , i }
6 2 5 cdif ( ℂ ∖ { - i , i } )
7 cdiv /
8 c2 2
9 3 8 7 co ( i / 2 )
10 cmul ·
11 clog log
12 c1 1
13 cmin
14 1 cv 𝑥
15 3 14 10 co ( i · 𝑥 )
16 12 15 13 co ( 1 − ( i · 𝑥 ) )
17 16 11 cfv ( log ‘ ( 1 − ( i · 𝑥 ) ) )
18 caddc +
19 12 15 18 co ( 1 + ( i · 𝑥 ) )
20 19 11 cfv ( log ‘ ( 1 + ( i · 𝑥 ) ) )
21 17 20 13 co ( ( log ‘ ( 1 − ( i · 𝑥 ) ) ) − ( log ‘ ( 1 + ( i · 𝑥 ) ) ) )
22 9 21 10 co ( ( i / 2 ) · ( ( log ‘ ( 1 − ( i · 𝑥 ) ) ) − ( log ‘ ( 1 + ( i · 𝑥 ) ) ) ) )
23 1 6 22 cmpt ( 𝑥 ∈ ( ℂ ∖ { - i , i } ) ↦ ( ( i / 2 ) · ( ( log ‘ ( 1 − ( i · 𝑥 ) ) ) − ( log ‘ ( 1 + ( i · 𝑥 ) ) ) ) ) )
24 0 23 wceq arctan = ( 𝑥 ∈ ( ℂ ∖ { - i , i } ) ↦ ( ( i / 2 ) · ( ( log ‘ ( 1 − ( i · 𝑥 ) ) ) − ( log ‘ ( 1 + ( i · 𝑥 ) ) ) ) ) )