| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cal |
⊢ AtLat |
| 1 |
|
vk |
⊢ 𝑘 |
| 2 |
|
clat |
⊢ Lat |
| 3 |
|
cbs |
⊢ Base |
| 4 |
1
|
cv |
⊢ 𝑘 |
| 5 |
4 3
|
cfv |
⊢ ( Base ‘ 𝑘 ) |
| 6 |
|
cglb |
⊢ glb |
| 7 |
4 6
|
cfv |
⊢ ( glb ‘ 𝑘 ) |
| 8 |
7
|
cdm |
⊢ dom ( glb ‘ 𝑘 ) |
| 9 |
5 8
|
wcel |
⊢ ( Base ‘ 𝑘 ) ∈ dom ( glb ‘ 𝑘 ) |
| 10 |
|
vx |
⊢ 𝑥 |
| 11 |
10
|
cv |
⊢ 𝑥 |
| 12 |
|
cp0 |
⊢ 0. |
| 13 |
4 12
|
cfv |
⊢ ( 0. ‘ 𝑘 ) |
| 14 |
11 13
|
wne |
⊢ 𝑥 ≠ ( 0. ‘ 𝑘 ) |
| 15 |
|
vp |
⊢ 𝑝 |
| 16 |
|
catm |
⊢ Atoms |
| 17 |
4 16
|
cfv |
⊢ ( Atoms ‘ 𝑘 ) |
| 18 |
15
|
cv |
⊢ 𝑝 |
| 19 |
|
cple |
⊢ le |
| 20 |
4 19
|
cfv |
⊢ ( le ‘ 𝑘 ) |
| 21 |
18 11 20
|
wbr |
⊢ 𝑝 ( le ‘ 𝑘 ) 𝑥 |
| 22 |
21 15 17
|
wrex |
⊢ ∃ 𝑝 ∈ ( Atoms ‘ 𝑘 ) 𝑝 ( le ‘ 𝑘 ) 𝑥 |
| 23 |
14 22
|
wi |
⊢ ( 𝑥 ≠ ( 0. ‘ 𝑘 ) → ∃ 𝑝 ∈ ( Atoms ‘ 𝑘 ) 𝑝 ( le ‘ 𝑘 ) 𝑥 ) |
| 24 |
23 10 5
|
wral |
⊢ ∀ 𝑥 ∈ ( Base ‘ 𝑘 ) ( 𝑥 ≠ ( 0. ‘ 𝑘 ) → ∃ 𝑝 ∈ ( Atoms ‘ 𝑘 ) 𝑝 ( le ‘ 𝑘 ) 𝑥 ) |
| 25 |
9 24
|
wa |
⊢ ( ( Base ‘ 𝑘 ) ∈ dom ( glb ‘ 𝑘 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑘 ) ( 𝑥 ≠ ( 0. ‘ 𝑘 ) → ∃ 𝑝 ∈ ( Atoms ‘ 𝑘 ) 𝑝 ( le ‘ 𝑘 ) 𝑥 ) ) |
| 26 |
25 1 2
|
crab |
⊢ { 𝑘 ∈ Lat ∣ ( ( Base ‘ 𝑘 ) ∈ dom ( glb ‘ 𝑘 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑘 ) ( 𝑥 ≠ ( 0. ‘ 𝑘 ) → ∃ 𝑝 ∈ ( Atoms ‘ 𝑘 ) 𝑝 ( le ‘ 𝑘 ) 𝑥 ) ) } |
| 27 |
0 26
|
wceq |
⊢ AtLat = { 𝑘 ∈ Lat ∣ ( ( Base ‘ 𝑘 ) ∈ dom ( glb ‘ 𝑘 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑘 ) ( 𝑥 ≠ ( 0. ‘ 𝑘 ) → ∃ 𝑝 ∈ ( Atoms ‘ 𝑘 ) 𝑝 ( le ‘ 𝑘 ) 𝑥 ) ) } |