Description: Define the class of poset atoms. (Contributed by NM, 18-Sep-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-ats | ⊢ Atoms = ( 𝑝 ∈ V ↦ { 𝑎 ∈ ( Base ‘ 𝑝 ) ∣ ( 0. ‘ 𝑝 ) ( ⋖ ‘ 𝑝 ) 𝑎 } ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 0 | catm | ⊢ Atoms | |
| 1 | vp | ⊢ 𝑝 | |
| 2 | cvv | ⊢ V | |
| 3 | va | ⊢ 𝑎 | |
| 4 | cbs | ⊢ Base | |
| 5 | 1 | cv | ⊢ 𝑝 | 
| 6 | 5 4 | cfv | ⊢ ( Base ‘ 𝑝 ) | 
| 7 | cp0 | ⊢ 0. | |
| 8 | 5 7 | cfv | ⊢ ( 0. ‘ 𝑝 ) | 
| 9 | ccvr | ⊢ ⋖ | |
| 10 | 5 9 | cfv | ⊢ ( ⋖ ‘ 𝑝 ) | 
| 11 | 3 | cv | ⊢ 𝑎 | 
| 12 | 8 11 10 | wbr | ⊢ ( 0. ‘ 𝑝 ) ( ⋖ ‘ 𝑝 ) 𝑎 | 
| 13 | 12 3 6 | crab | ⊢ { 𝑎 ∈ ( Base ‘ 𝑝 ) ∣ ( 0. ‘ 𝑝 ) ( ⋖ ‘ 𝑝 ) 𝑎 } | 
| 14 | 1 2 13 | cmpt | ⊢ ( 𝑝 ∈ V ↦ { 𝑎 ∈ ( Base ‘ 𝑝 ) ∣ ( 0. ‘ 𝑝 ) ( ⋖ ‘ 𝑝 ) 𝑎 } ) | 
| 15 | 0 14 | wceq | ⊢ Atoms = ( 𝑝 ∈ V ↦ { 𝑎 ∈ ( Base ‘ 𝑝 ) ∣ ( 0. ‘ 𝑝 ) ( ⋖ ‘ 𝑝 ) 𝑎 } ) |