Description: Define the binomial coefficient operation. For example, ( 5C 3 ) = 1 0 ( ex-bc ).
In the literature, this function is often written as a column vector of the two arguments, or with the arguments as subscripts before and after the letter "C". The expression ( N C K ) is read " N choose K ". Definition of binomial coefficient in Gleason p. 295. As suggested by Gleason, we define it to be 0 when 0 <_ k <_ n does not hold. (Contributed by NM, 10-Jul-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-bc | ⊢ C = ( 𝑛 ∈ ℕ0 , 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ ( 0 ... 𝑛 ) , ( ( ! ‘ 𝑛 ) / ( ( ! ‘ ( 𝑛 − 𝑘 ) ) · ( ! ‘ 𝑘 ) ) ) , 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cbc | ⊢ C | |
| 1 | vn | ⊢ 𝑛 | |
| 2 | cn0 | ⊢ ℕ0 | |
| 3 | vk | ⊢ 𝑘 | |
| 4 | cz | ⊢ ℤ | |
| 5 | 3 | cv | ⊢ 𝑘 |
| 6 | cc0 | ⊢ 0 | |
| 7 | cfz | ⊢ ... | |
| 8 | 1 | cv | ⊢ 𝑛 |
| 9 | 6 8 7 | co | ⊢ ( 0 ... 𝑛 ) |
| 10 | 5 9 | wcel | ⊢ 𝑘 ∈ ( 0 ... 𝑛 ) |
| 11 | cfa | ⊢ ! | |
| 12 | 8 11 | cfv | ⊢ ( ! ‘ 𝑛 ) |
| 13 | cdiv | ⊢ / | |
| 14 | cmin | ⊢ − | |
| 15 | 8 5 14 | co | ⊢ ( 𝑛 − 𝑘 ) |
| 16 | 15 11 | cfv | ⊢ ( ! ‘ ( 𝑛 − 𝑘 ) ) |
| 17 | cmul | ⊢ · | |
| 18 | 5 11 | cfv | ⊢ ( ! ‘ 𝑘 ) |
| 19 | 16 18 17 | co | ⊢ ( ( ! ‘ ( 𝑛 − 𝑘 ) ) · ( ! ‘ 𝑘 ) ) |
| 20 | 12 19 13 | co | ⊢ ( ( ! ‘ 𝑛 ) / ( ( ! ‘ ( 𝑛 − 𝑘 ) ) · ( ! ‘ 𝑘 ) ) ) |
| 21 | 10 20 6 | cif | ⊢ if ( 𝑘 ∈ ( 0 ... 𝑛 ) , ( ( ! ‘ 𝑛 ) / ( ( ! ‘ ( 𝑛 − 𝑘 ) ) · ( ! ‘ 𝑘 ) ) ) , 0 ) |
| 22 | 1 3 2 4 21 | cmpo | ⊢ ( 𝑛 ∈ ℕ0 , 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ ( 0 ... 𝑛 ) , ( ( ! ‘ 𝑛 ) / ( ( ! ‘ ( 𝑛 − 𝑘 ) ) · ( ! ‘ 𝑘 ) ) ) , 0 ) ) |
| 23 | 0 22 | wceq | ⊢ C = ( 𝑛 ∈ ℕ0 , 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ ( 0 ... 𝑛 ) , ( ( ! ‘ 𝑛 ) / ( ( ! ‘ ( 𝑛 − 𝑘 ) ) · ( ! ‘ 𝑘 ) ) ) , 0 ) ) |