Metamath Proof Explorer


Definition df-bdop

Description: Define the set of bounded linear Hilbert space operators. (See df-hosum for definition of operator.) (Contributed by NM, 18-Jan-2006) (New usage is discouraged.)

Ref Expression
Assertion df-bdop BndLinOp = { 𝑡 ∈ LinOp ∣ ( normop𝑡 ) < +∞ }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cbo BndLinOp
1 vt 𝑡
2 clo LinOp
3 cnop normop
4 1 cv 𝑡
5 4 3 cfv ( normop𝑡 )
6 clt <
7 cpnf +∞
8 5 7 6 wbr ( normop𝑡 ) < +∞
9 8 1 2 crab { 𝑡 ∈ LinOp ∣ ( normop𝑡 ) < +∞ }
10 0 9 wceq BndLinOp = { 𝑡 ∈ LinOp ∣ ( normop𝑡 ) < +∞ }