Database
COMPLEX HILBERT SPACE EXPLORER (DEPRECATED)
Operators on Hilbert spaces
Linear, continuous, bounded, Hermitian, unitary operators and norms
df-bdop
Metamath Proof Explorer
Description: Define the set of bounded linear Hilbert space operators. (See
df-hosum for definition of operator.) (Contributed by NM , 18-Jan-2006) (New usage is discouraged.)
Ref
Expression
Assertion
df-bdop
⊢ BndLinOp = { 𝑡 ∈ LinOp ∣ ( normop ‘ 𝑡 ) < +∞ }
Detailed syntax breakdown
Step
Hyp
Ref
Expression
0
cbo
⊢ BndLinOp
1
vt
⊢ 𝑡
2
clo
⊢ LinOp
3
cnop
⊢ normop
4
1
cv
⊢ 𝑡
5
4 3
cfv
⊢ ( normop ‘ 𝑡 )
6
clt
⊢ <
7
cpnf
⊢ +∞
8
5 7 6
wbr
⊢ ( normop ‘ 𝑡 ) < +∞
9
8 1 2
crab
⊢ { 𝑡 ∈ LinOp ∣ ( normop ‘ 𝑡 ) < +∞ }
10
0 9
wceq
⊢ BndLinOp = { 𝑡 ∈ LinOp ∣ ( normop ‘ 𝑡 ) < +∞ }