| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cblo |
⊢ BLnOp |
| 1 |
|
vu |
⊢ 𝑢 |
| 2 |
|
cnv |
⊢ NrmCVec |
| 3 |
|
vw |
⊢ 𝑤 |
| 4 |
|
vt |
⊢ 𝑡 |
| 5 |
1
|
cv |
⊢ 𝑢 |
| 6 |
|
clno |
⊢ LnOp |
| 7 |
3
|
cv |
⊢ 𝑤 |
| 8 |
5 7 6
|
co |
⊢ ( 𝑢 LnOp 𝑤 ) |
| 9 |
|
cnmoo |
⊢ normOpOLD |
| 10 |
5 7 9
|
co |
⊢ ( 𝑢 normOpOLD 𝑤 ) |
| 11 |
4
|
cv |
⊢ 𝑡 |
| 12 |
11 10
|
cfv |
⊢ ( ( 𝑢 normOpOLD 𝑤 ) ‘ 𝑡 ) |
| 13 |
|
clt |
⊢ < |
| 14 |
|
cpnf |
⊢ +∞ |
| 15 |
12 14 13
|
wbr |
⊢ ( ( 𝑢 normOpOLD 𝑤 ) ‘ 𝑡 ) < +∞ |
| 16 |
15 4 8
|
crab |
⊢ { 𝑡 ∈ ( 𝑢 LnOp 𝑤 ) ∣ ( ( 𝑢 normOpOLD 𝑤 ) ‘ 𝑡 ) < +∞ } |
| 17 |
1 3 2 2 16
|
cmpo |
⊢ ( 𝑢 ∈ NrmCVec , 𝑤 ∈ NrmCVec ↦ { 𝑡 ∈ ( 𝑢 LnOp 𝑤 ) ∣ ( ( 𝑢 normOpOLD 𝑤 ) ‘ 𝑡 ) < +∞ } ) |
| 18 |
0 17
|
wceq |
⊢ BLnOp = ( 𝑢 ∈ NrmCVec , 𝑤 ∈ NrmCVec ↦ { 𝑡 ∈ ( 𝑢 LnOp 𝑤 ) ∣ ( ( 𝑢 normOpOLD 𝑤 ) ‘ 𝑡 ) < +∞ } ) |