Metamath Proof Explorer


Definition df-blo

Description: Define the class of bounded linear operators between two normed complex vector spaces. (Contributed by NM, 6-Nov-2007) (New usage is discouraged.)

Ref Expression
Assertion df-blo BLnOp = ( 𝑢 ∈ NrmCVec , 𝑤 ∈ NrmCVec ↦ { 𝑡 ∈ ( 𝑢 LnOp 𝑤 ) ∣ ( ( 𝑢 normOpOLD 𝑤 ) ‘ 𝑡 ) < +∞ } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cblo BLnOp
1 vu 𝑢
2 cnv NrmCVec
3 vw 𝑤
4 vt 𝑡
5 1 cv 𝑢
6 clno LnOp
7 3 cv 𝑤
8 5 7 6 co ( 𝑢 LnOp 𝑤 )
9 cnmoo normOpOLD
10 5 7 9 co ( 𝑢 normOpOLD 𝑤 )
11 4 cv 𝑡
12 11 10 cfv ( ( 𝑢 normOpOLD 𝑤 ) ‘ 𝑡 )
13 clt <
14 cpnf +∞
15 12 14 13 wbr ( ( 𝑢 normOpOLD 𝑤 ) ‘ 𝑡 ) < +∞
16 15 4 8 crab { 𝑡 ∈ ( 𝑢 LnOp 𝑤 ) ∣ ( ( 𝑢 normOpOLD 𝑤 ) ‘ 𝑡 ) < +∞ }
17 1 3 2 2 16 cmpo ( 𝑢 ∈ NrmCVec , 𝑤 ∈ NrmCVec ↦ { 𝑡 ∈ ( 𝑢 LnOp 𝑤 ) ∣ ( ( 𝑢 normOpOLD 𝑤 ) ‘ 𝑡 ) < +∞ } )
18 0 17 wceq BLnOp = ( 𝑢 ∈ NrmCVec , 𝑤 ∈ NrmCVec ↦ { 𝑡 ∈ ( 𝑢 LnOp 𝑤 ) ∣ ( ( 𝑢 normOpOLD 𝑤 ) ‘ 𝑡 ) < +∞ } )