| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cbnd |
⊢ Bnd |
| 1 |
|
vx |
⊢ 𝑥 |
| 2 |
|
cvv |
⊢ V |
| 3 |
|
vm |
⊢ 𝑚 |
| 4 |
|
cmet |
⊢ Met |
| 5 |
1
|
cv |
⊢ 𝑥 |
| 6 |
5 4
|
cfv |
⊢ ( Met ‘ 𝑥 ) |
| 7 |
|
vy |
⊢ 𝑦 |
| 8 |
|
vr |
⊢ 𝑟 |
| 9 |
|
crp |
⊢ ℝ+ |
| 10 |
7
|
cv |
⊢ 𝑦 |
| 11 |
|
cbl |
⊢ ball |
| 12 |
3
|
cv |
⊢ 𝑚 |
| 13 |
12 11
|
cfv |
⊢ ( ball ‘ 𝑚 ) |
| 14 |
8
|
cv |
⊢ 𝑟 |
| 15 |
10 14 13
|
co |
⊢ ( 𝑦 ( ball ‘ 𝑚 ) 𝑟 ) |
| 16 |
5 15
|
wceq |
⊢ 𝑥 = ( 𝑦 ( ball ‘ 𝑚 ) 𝑟 ) |
| 17 |
16 8 9
|
wrex |
⊢ ∃ 𝑟 ∈ ℝ+ 𝑥 = ( 𝑦 ( ball ‘ 𝑚 ) 𝑟 ) |
| 18 |
17 7 5
|
wral |
⊢ ∀ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ 𝑥 = ( 𝑦 ( ball ‘ 𝑚 ) 𝑟 ) |
| 19 |
18 3 6
|
crab |
⊢ { 𝑚 ∈ ( Met ‘ 𝑥 ) ∣ ∀ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ 𝑥 = ( 𝑦 ( ball ‘ 𝑚 ) 𝑟 ) } |
| 20 |
1 2 19
|
cmpt |
⊢ ( 𝑥 ∈ V ↦ { 𝑚 ∈ ( Met ‘ 𝑥 ) ∣ ∀ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ 𝑥 = ( 𝑦 ( ball ‘ 𝑚 ) 𝑟 ) } ) |
| 21 |
0 20
|
wceq |
⊢ Bnd = ( 𝑥 ∈ V ↦ { 𝑚 ∈ ( Met ‘ 𝑥 ) ∣ ∀ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ 𝑥 = ( 𝑦 ( ball ‘ 𝑚 ) 𝑟 ) } ) |