Metamath Proof Explorer


Definition df-bnd

Description: Define the class of bounded metrics. A metric space is bounded iff it can be covered by a single ball. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Assertion df-bnd Bnd = ( 𝑥 ∈ V ↦ { 𝑚 ∈ ( Met ‘ 𝑥 ) ∣ ∀ 𝑦𝑥𝑟 ∈ ℝ+ 𝑥 = ( 𝑦 ( ball ‘ 𝑚 ) 𝑟 ) } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cbnd Bnd
1 vx 𝑥
2 cvv V
3 vm 𝑚
4 cmet Met
5 1 cv 𝑥
6 5 4 cfv ( Met ‘ 𝑥 )
7 vy 𝑦
8 vr 𝑟
9 crp +
10 7 cv 𝑦
11 cbl ball
12 3 cv 𝑚
13 12 11 cfv ( ball ‘ 𝑚 )
14 8 cv 𝑟
15 10 14 13 co ( 𝑦 ( ball ‘ 𝑚 ) 𝑟 )
16 5 15 wceq 𝑥 = ( 𝑦 ( ball ‘ 𝑚 ) 𝑟 )
17 16 8 9 wrex 𝑟 ∈ ℝ+ 𝑥 = ( 𝑦 ( ball ‘ 𝑚 ) 𝑟 )
18 17 7 5 wral 𝑦𝑥𝑟 ∈ ℝ+ 𝑥 = ( 𝑦 ( ball ‘ 𝑚 ) 𝑟 )
19 18 3 6 crab { 𝑚 ∈ ( Met ‘ 𝑥 ) ∣ ∀ 𝑦𝑥𝑟 ∈ ℝ+ 𝑥 = ( 𝑦 ( ball ‘ 𝑚 ) 𝑟 ) }
20 1 2 19 cmpt ( 𝑥 ∈ V ↦ { 𝑚 ∈ ( Met ‘ 𝑥 ) ∣ ∀ 𝑦𝑥𝑟 ∈ ℝ+ 𝑥 = ( 𝑦 ( ball ‘ 𝑚 ) 𝑟 ) } )
21 0 20 wceq Bnd = ( 𝑥 ∈ V ↦ { 𝑚 ∈ ( Met ‘ 𝑥 ) ∣ ∀ 𝑦𝑥𝑟 ∈ ℝ+ 𝑥 = ( 𝑦 ( ball ‘ 𝑚 ) 𝑟 ) } )