Metamath Proof Explorer


Definition df-bnj13

Description: Define the following predicate: R is set-like on A . (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Assertion df-bnj13 ( 𝑅 Se 𝐴 ↔ ∀ 𝑥𝐴 pred ( 𝑥 , 𝐴 , 𝑅 ) ∈ V )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cR 𝑅
1 cA 𝐴
2 1 0 w-bnj13 𝑅 Se 𝐴
3 vx 𝑥
4 3 cv 𝑥
5 1 0 4 c-bnj14 pred ( 𝑥 , 𝐴 , 𝑅 )
6 cvv V
7 5 6 wcel pred ( 𝑥 , 𝐴 , 𝑅 ) ∈ V
8 7 3 1 wral 𝑥𝐴 pred ( 𝑥 , 𝐴 , 𝑅 ) ∈ V
9 2 8 wb ( 𝑅 Se 𝐴 ↔ ∀ 𝑥𝐴 pred ( 𝑥 , 𝐴 , 𝑅 ) ∈ V )