Metamath Proof Explorer


Definition df-bnj14

Description: Define the function giving: the class of all elements of A that are "smaller" than X according to R . (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Assertion df-bnj14 pred ( 𝑋 , 𝐴 , 𝑅 ) = { 𝑦𝐴𝑦 𝑅 𝑋 }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cX 𝑋
1 cA 𝐴
2 cR 𝑅
3 1 2 0 c-bnj14 pred ( 𝑋 , 𝐴 , 𝑅 )
4 vy 𝑦
5 4 cv 𝑦
6 5 0 2 wbr 𝑦 𝑅 𝑋
7 6 4 1 crab { 𝑦𝐴𝑦 𝑅 𝑋 }
8 3 7 wceq pred ( 𝑋 , 𝐴 , 𝑅 ) = { 𝑦𝐴𝑦 𝑅 𝑋 }