Metamath Proof Explorer
Description: Define the 4-way conjunction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
|
|
Ref |
Expression |
|
Assertion |
df-bnj17 |
⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃 ) ↔ ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ∧ 𝜃 ) ) |
Detailed syntax breakdown
Step |
Hyp |
Ref |
Expression |
0 |
|
wph |
⊢ 𝜑 |
1 |
|
wps |
⊢ 𝜓 |
2 |
|
wch |
⊢ 𝜒 |
3 |
|
wth |
⊢ 𝜃 |
4 |
0 1 2 3
|
w-bnj17 |
⊢ ( 𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃 ) |
5 |
0 1 2
|
w3a |
⊢ ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) |
6 |
5 3
|
wa |
⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ∧ 𝜃 ) |
7 |
4 6
|
wb |
⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃 ) ↔ ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ∧ 𝜃 ) ) |