Step |
Hyp |
Ref |
Expression |
0 |
|
cX |
⊢ 𝑋 |
1 |
|
cA |
⊢ 𝐴 |
2 |
|
cR |
⊢ 𝑅 |
3 |
1 2 0
|
c-bnj18 |
⊢ trCl ( 𝑋 , 𝐴 , 𝑅 ) |
4 |
|
vf |
⊢ 𝑓 |
5 |
|
vn |
⊢ 𝑛 |
6 |
|
com |
⊢ ω |
7 |
|
c0 |
⊢ ∅ |
8 |
7
|
csn |
⊢ { ∅ } |
9 |
6 8
|
cdif |
⊢ ( ω ∖ { ∅ } ) |
10 |
4
|
cv |
⊢ 𝑓 |
11 |
5
|
cv |
⊢ 𝑛 |
12 |
10 11
|
wfn |
⊢ 𝑓 Fn 𝑛 |
13 |
7 10
|
cfv |
⊢ ( 𝑓 ‘ ∅ ) |
14 |
1 2 0
|
c-bnj14 |
⊢ pred ( 𝑋 , 𝐴 , 𝑅 ) |
15 |
13 14
|
wceq |
⊢ ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) |
16 |
|
vi |
⊢ 𝑖 |
17 |
16
|
cv |
⊢ 𝑖 |
18 |
17
|
csuc |
⊢ suc 𝑖 |
19 |
18 11
|
wcel |
⊢ suc 𝑖 ∈ 𝑛 |
20 |
18 10
|
cfv |
⊢ ( 𝑓 ‘ suc 𝑖 ) |
21 |
|
vy |
⊢ 𝑦 |
22 |
17 10
|
cfv |
⊢ ( 𝑓 ‘ 𝑖 ) |
23 |
21
|
cv |
⊢ 𝑦 |
24 |
1 2 23
|
c-bnj14 |
⊢ pred ( 𝑦 , 𝐴 , 𝑅 ) |
25 |
21 22 24
|
ciun |
⊢ ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) |
26 |
20 25
|
wceq |
⊢ ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) |
27 |
19 26
|
wi |
⊢ ( suc 𝑖 ∈ 𝑛 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) |
28 |
27 16 6
|
wral |
⊢ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑛 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) |
29 |
12 15 28
|
w3a |
⊢ ( 𝑓 Fn 𝑛 ∧ ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ∧ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑛 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
30 |
29 5 9
|
wrex |
⊢ ∃ 𝑛 ∈ ( ω ∖ { ∅ } ) ( 𝑓 Fn 𝑛 ∧ ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ∧ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑛 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
31 |
30 4
|
cab |
⊢ { 𝑓 ∣ ∃ 𝑛 ∈ ( ω ∖ { ∅ } ) ( 𝑓 Fn 𝑛 ∧ ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ∧ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑛 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) } |
32 |
10
|
cdm |
⊢ dom 𝑓 |
33 |
16 32 22
|
ciun |
⊢ ∪ 𝑖 ∈ dom 𝑓 ( 𝑓 ‘ 𝑖 ) |
34 |
4 31 33
|
ciun |
⊢ ∪ 𝑓 ∈ { 𝑓 ∣ ∃ 𝑛 ∈ ( ω ∖ { ∅ } ) ( 𝑓 Fn 𝑛 ∧ ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ∧ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑛 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) } ∪ 𝑖 ∈ dom 𝑓 ( 𝑓 ‘ 𝑖 ) |
35 |
3 34
|
wceq |
⊢ trCl ( 𝑋 , 𝐴 , 𝑅 ) = ∪ 𝑓 ∈ { 𝑓 ∣ ∃ 𝑛 ∈ ( ω ∖ { ∅ } ) ( 𝑓 Fn 𝑛 ∧ ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ∧ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑛 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) } ∪ 𝑖 ∈ dom 𝑓 ( 𝑓 ‘ 𝑖 ) |