| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cX |
⊢ 𝑋 |
| 1 |
|
cA |
⊢ 𝐴 |
| 2 |
|
cR |
⊢ 𝑅 |
| 3 |
1 2 0
|
c-bnj18 |
⊢ trCl ( 𝑋 , 𝐴 , 𝑅 ) |
| 4 |
|
vf |
⊢ 𝑓 |
| 5 |
|
vn |
⊢ 𝑛 |
| 6 |
|
com |
⊢ ω |
| 7 |
|
c0 |
⊢ ∅ |
| 8 |
7
|
csn |
⊢ { ∅ } |
| 9 |
6 8
|
cdif |
⊢ ( ω ∖ { ∅ } ) |
| 10 |
4
|
cv |
⊢ 𝑓 |
| 11 |
5
|
cv |
⊢ 𝑛 |
| 12 |
10 11
|
wfn |
⊢ 𝑓 Fn 𝑛 |
| 13 |
7 10
|
cfv |
⊢ ( 𝑓 ‘ ∅ ) |
| 14 |
1 2 0
|
c-bnj14 |
⊢ pred ( 𝑋 , 𝐴 , 𝑅 ) |
| 15 |
13 14
|
wceq |
⊢ ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) |
| 16 |
|
vi |
⊢ 𝑖 |
| 17 |
16
|
cv |
⊢ 𝑖 |
| 18 |
17
|
csuc |
⊢ suc 𝑖 |
| 19 |
18 11
|
wcel |
⊢ suc 𝑖 ∈ 𝑛 |
| 20 |
18 10
|
cfv |
⊢ ( 𝑓 ‘ suc 𝑖 ) |
| 21 |
|
vy |
⊢ 𝑦 |
| 22 |
17 10
|
cfv |
⊢ ( 𝑓 ‘ 𝑖 ) |
| 23 |
21
|
cv |
⊢ 𝑦 |
| 24 |
1 2 23
|
c-bnj14 |
⊢ pred ( 𝑦 , 𝐴 , 𝑅 ) |
| 25 |
21 22 24
|
ciun |
⊢ ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) |
| 26 |
20 25
|
wceq |
⊢ ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) |
| 27 |
19 26
|
wi |
⊢ ( suc 𝑖 ∈ 𝑛 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) |
| 28 |
27 16 6
|
wral |
⊢ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑛 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) |
| 29 |
12 15 28
|
w3a |
⊢ ( 𝑓 Fn 𝑛 ∧ ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ∧ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑛 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
| 30 |
29 5 9
|
wrex |
⊢ ∃ 𝑛 ∈ ( ω ∖ { ∅ } ) ( 𝑓 Fn 𝑛 ∧ ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ∧ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑛 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
| 31 |
30 4
|
cab |
⊢ { 𝑓 ∣ ∃ 𝑛 ∈ ( ω ∖ { ∅ } ) ( 𝑓 Fn 𝑛 ∧ ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ∧ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑛 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) } |
| 32 |
10
|
cdm |
⊢ dom 𝑓 |
| 33 |
16 32 22
|
ciun |
⊢ ∪ 𝑖 ∈ dom 𝑓 ( 𝑓 ‘ 𝑖 ) |
| 34 |
4 31 33
|
ciun |
⊢ ∪ 𝑓 ∈ { 𝑓 ∣ ∃ 𝑛 ∈ ( ω ∖ { ∅ } ) ( 𝑓 Fn 𝑛 ∧ ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ∧ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑛 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) } ∪ 𝑖 ∈ dom 𝑓 ( 𝑓 ‘ 𝑖 ) |
| 35 |
3 34
|
wceq |
⊢ trCl ( 𝑋 , 𝐴 , 𝑅 ) = ∪ 𝑓 ∈ { 𝑓 ∣ ∃ 𝑛 ∈ ( ω ∖ { ∅ } ) ( 𝑓 Fn 𝑛 ∧ ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ∧ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑛 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) } ∪ 𝑖 ∈ dom 𝑓 ( 𝑓 ‘ 𝑖 ) |