Metamath Proof Explorer


Definition df-bnj19

Description: Define the following predicate: B is transitive for A and R . (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Assertion df-bnj19 ( TrFo ( 𝐵 , 𝐴 , 𝑅 ) ↔ ∀ 𝑥𝐵 pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ 𝐵 )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cB 𝐵
1 cA 𝐴
2 cR 𝑅
3 1 0 2 w-bnj19 TrFo ( 𝐵 , 𝐴 , 𝑅 )
4 vx 𝑥
5 4 cv 𝑥
6 1 2 5 c-bnj14 pred ( 𝑥 , 𝐴 , 𝑅 )
7 6 0 wss pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ 𝐵
8 7 4 0 wral 𝑥𝐵 pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ 𝐵
9 3 8 wb ( TrFo ( 𝐵 , 𝐴 , 𝑅 ) ↔ ∀ 𝑥𝐵 pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ 𝐵 )