Metamath Proof Explorer


Definition df-bpoly

Description: Define the Bernoulli polynomials. Here we use well-founded recursion to define the Bernoulli polynomials. This agrees with most textbook definitions, although explicit formulas do exist. (Contributed by Scott Fenton, 22-May-2014)

Ref Expression
Assertion df-bpoly BernPoly = ( 𝑚 ∈ ℕ0 , 𝑥 ∈ ℂ ↦ ( wrecs ( < , ℕ0 , ( 𝑔 ∈ V ↦ ( ♯ ‘ dom 𝑔 ) / 𝑛 ( ( 𝑥𝑛 ) − Σ 𝑘 ∈ dom 𝑔 ( ( 𝑛 C 𝑘 ) · ( ( 𝑔𝑘 ) / ( ( 𝑛𝑘 ) + 1 ) ) ) ) ) ) ‘ 𝑚 ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cbp BernPoly
1 vm 𝑚
2 cn0 0
3 vx 𝑥
4 cc
5 clt <
6 vg 𝑔
7 cvv V
8 chash
9 6 cv 𝑔
10 9 cdm dom 𝑔
11 10 8 cfv ( ♯ ‘ dom 𝑔 )
12 vn 𝑛
13 3 cv 𝑥
14 cexp
15 12 cv 𝑛
16 13 15 14 co ( 𝑥𝑛 )
17 cmin
18 vk 𝑘
19 cbc C
20 18 cv 𝑘
21 15 20 19 co ( 𝑛 C 𝑘 )
22 cmul ·
23 20 9 cfv ( 𝑔𝑘 )
24 cdiv /
25 15 20 17 co ( 𝑛𝑘 )
26 caddc +
27 c1 1
28 25 27 26 co ( ( 𝑛𝑘 ) + 1 )
29 23 28 24 co ( ( 𝑔𝑘 ) / ( ( 𝑛𝑘 ) + 1 ) )
30 21 29 22 co ( ( 𝑛 C 𝑘 ) · ( ( 𝑔𝑘 ) / ( ( 𝑛𝑘 ) + 1 ) ) )
31 10 30 18 csu Σ 𝑘 ∈ dom 𝑔 ( ( 𝑛 C 𝑘 ) · ( ( 𝑔𝑘 ) / ( ( 𝑛𝑘 ) + 1 ) ) )
32 16 31 17 co ( ( 𝑥𝑛 ) − Σ 𝑘 ∈ dom 𝑔 ( ( 𝑛 C 𝑘 ) · ( ( 𝑔𝑘 ) / ( ( 𝑛𝑘 ) + 1 ) ) ) )
33 12 11 32 csb ( ♯ ‘ dom 𝑔 ) / 𝑛 ( ( 𝑥𝑛 ) − Σ 𝑘 ∈ dom 𝑔 ( ( 𝑛 C 𝑘 ) · ( ( 𝑔𝑘 ) / ( ( 𝑛𝑘 ) + 1 ) ) ) )
34 6 7 33 cmpt ( 𝑔 ∈ V ↦ ( ♯ ‘ dom 𝑔 ) / 𝑛 ( ( 𝑥𝑛 ) − Σ 𝑘 ∈ dom 𝑔 ( ( 𝑛 C 𝑘 ) · ( ( 𝑔𝑘 ) / ( ( 𝑛𝑘 ) + 1 ) ) ) ) )
35 2 5 34 cwrecs wrecs ( < , ℕ0 , ( 𝑔 ∈ V ↦ ( ♯ ‘ dom 𝑔 ) / 𝑛 ( ( 𝑥𝑛 ) − Σ 𝑘 ∈ dom 𝑔 ( ( 𝑛 C 𝑘 ) · ( ( 𝑔𝑘 ) / ( ( 𝑛𝑘 ) + 1 ) ) ) ) ) )
36 1 cv 𝑚
37 36 35 cfv ( wrecs ( < , ℕ0 , ( 𝑔 ∈ V ↦ ( ♯ ‘ dom 𝑔 ) / 𝑛 ( ( 𝑥𝑛 ) − Σ 𝑘 ∈ dom 𝑔 ( ( 𝑛 C 𝑘 ) · ( ( 𝑔𝑘 ) / ( ( 𝑛𝑘 ) + 1 ) ) ) ) ) ) ‘ 𝑚 )
38 1 3 2 4 37 cmpo ( 𝑚 ∈ ℕ0 , 𝑥 ∈ ℂ ↦ ( wrecs ( < , ℕ0 , ( 𝑔 ∈ V ↦ ( ♯ ‘ dom 𝑔 ) / 𝑛 ( ( 𝑥𝑛 ) − Σ 𝑘 ∈ dom 𝑔 ( ( 𝑛 C 𝑘 ) · ( ( 𝑔𝑘 ) / ( ( 𝑛𝑘 ) + 1 ) ) ) ) ) ) ‘ 𝑚 ) )
39 0 38 wceq BernPoly = ( 𝑚 ∈ ℕ0 , 𝑥 ∈ ℂ ↦ ( wrecs ( < , ℕ0 , ( 𝑔 ∈ V ↦ ( ♯ ‘ dom 𝑔 ) / 𝑛 ( ( 𝑥𝑛 ) − Σ 𝑘 ∈ dom 𝑔 ( ( 𝑛 C 𝑘 ) · ( ( 𝑔𝑘 ) / ( ( 𝑛𝑘 ) + 1 ) ) ) ) ) ) ‘ 𝑚 ) )