Step |
Hyp |
Ref |
Expression |
0 |
|
cbp |
⊢ BernPoly |
1 |
|
vm |
⊢ 𝑚 |
2 |
|
cn0 |
⊢ ℕ0 |
3 |
|
vx |
⊢ 𝑥 |
4 |
|
cc |
⊢ ℂ |
5 |
|
clt |
⊢ < |
6 |
|
vg |
⊢ 𝑔 |
7 |
|
cvv |
⊢ V |
8 |
|
chash |
⊢ ♯ |
9 |
6
|
cv |
⊢ 𝑔 |
10 |
9
|
cdm |
⊢ dom 𝑔 |
11 |
10 8
|
cfv |
⊢ ( ♯ ‘ dom 𝑔 ) |
12 |
|
vn |
⊢ 𝑛 |
13 |
3
|
cv |
⊢ 𝑥 |
14 |
|
cexp |
⊢ ↑ |
15 |
12
|
cv |
⊢ 𝑛 |
16 |
13 15 14
|
co |
⊢ ( 𝑥 ↑ 𝑛 ) |
17 |
|
cmin |
⊢ − |
18 |
|
vk |
⊢ 𝑘 |
19 |
|
cbc |
⊢ C |
20 |
18
|
cv |
⊢ 𝑘 |
21 |
15 20 19
|
co |
⊢ ( 𝑛 C 𝑘 ) |
22 |
|
cmul |
⊢ · |
23 |
20 9
|
cfv |
⊢ ( 𝑔 ‘ 𝑘 ) |
24 |
|
cdiv |
⊢ / |
25 |
15 20 17
|
co |
⊢ ( 𝑛 − 𝑘 ) |
26 |
|
caddc |
⊢ + |
27 |
|
c1 |
⊢ 1 |
28 |
25 27 26
|
co |
⊢ ( ( 𝑛 − 𝑘 ) + 1 ) |
29 |
23 28 24
|
co |
⊢ ( ( 𝑔 ‘ 𝑘 ) / ( ( 𝑛 − 𝑘 ) + 1 ) ) |
30 |
21 29 22
|
co |
⊢ ( ( 𝑛 C 𝑘 ) · ( ( 𝑔 ‘ 𝑘 ) / ( ( 𝑛 − 𝑘 ) + 1 ) ) ) |
31 |
10 30 18
|
csu |
⊢ Σ 𝑘 ∈ dom 𝑔 ( ( 𝑛 C 𝑘 ) · ( ( 𝑔 ‘ 𝑘 ) / ( ( 𝑛 − 𝑘 ) + 1 ) ) ) |
32 |
16 31 17
|
co |
⊢ ( ( 𝑥 ↑ 𝑛 ) − Σ 𝑘 ∈ dom 𝑔 ( ( 𝑛 C 𝑘 ) · ( ( 𝑔 ‘ 𝑘 ) / ( ( 𝑛 − 𝑘 ) + 1 ) ) ) ) |
33 |
12 11 32
|
csb |
⊢ ⦋ ( ♯ ‘ dom 𝑔 ) / 𝑛 ⦌ ( ( 𝑥 ↑ 𝑛 ) − Σ 𝑘 ∈ dom 𝑔 ( ( 𝑛 C 𝑘 ) · ( ( 𝑔 ‘ 𝑘 ) / ( ( 𝑛 − 𝑘 ) + 1 ) ) ) ) |
34 |
6 7 33
|
cmpt |
⊢ ( 𝑔 ∈ V ↦ ⦋ ( ♯ ‘ dom 𝑔 ) / 𝑛 ⦌ ( ( 𝑥 ↑ 𝑛 ) − Σ 𝑘 ∈ dom 𝑔 ( ( 𝑛 C 𝑘 ) · ( ( 𝑔 ‘ 𝑘 ) / ( ( 𝑛 − 𝑘 ) + 1 ) ) ) ) ) |
35 |
2 5 34
|
cwrecs |
⊢ wrecs ( < , ℕ0 , ( 𝑔 ∈ V ↦ ⦋ ( ♯ ‘ dom 𝑔 ) / 𝑛 ⦌ ( ( 𝑥 ↑ 𝑛 ) − Σ 𝑘 ∈ dom 𝑔 ( ( 𝑛 C 𝑘 ) · ( ( 𝑔 ‘ 𝑘 ) / ( ( 𝑛 − 𝑘 ) + 1 ) ) ) ) ) ) |
36 |
1
|
cv |
⊢ 𝑚 |
37 |
36 35
|
cfv |
⊢ ( wrecs ( < , ℕ0 , ( 𝑔 ∈ V ↦ ⦋ ( ♯ ‘ dom 𝑔 ) / 𝑛 ⦌ ( ( 𝑥 ↑ 𝑛 ) − Σ 𝑘 ∈ dom 𝑔 ( ( 𝑛 C 𝑘 ) · ( ( 𝑔 ‘ 𝑘 ) / ( ( 𝑛 − 𝑘 ) + 1 ) ) ) ) ) ) ‘ 𝑚 ) |
38 |
1 3 2 4 37
|
cmpo |
⊢ ( 𝑚 ∈ ℕ0 , 𝑥 ∈ ℂ ↦ ( wrecs ( < , ℕ0 , ( 𝑔 ∈ V ↦ ⦋ ( ♯ ‘ dom 𝑔 ) / 𝑛 ⦌ ( ( 𝑥 ↑ 𝑛 ) − Σ 𝑘 ∈ dom 𝑔 ( ( 𝑛 C 𝑘 ) · ( ( 𝑔 ‘ 𝑘 ) / ( ( 𝑛 − 𝑘 ) + 1 ) ) ) ) ) ) ‘ 𝑚 ) ) |
39 |
0 38
|
wceq |
⊢ BernPoly = ( 𝑚 ∈ ℕ0 , 𝑥 ∈ ℂ ↦ ( wrecs ( < , ℕ0 , ( 𝑔 ∈ V ↦ ⦋ ( ♯ ‘ dom 𝑔 ) / 𝑛 ⦌ ( ( 𝑥 ↑ 𝑛 ) − Σ 𝑘 ∈ dom 𝑔 ( ( 𝑛 C 𝑘 ) · ( ( 𝑔 ‘ 𝑘 ) / ( ( 𝑛 − 𝑘 ) + 1 ) ) ) ) ) ) ‘ 𝑚 ) ) |