Metamath Proof Explorer


Definition df-catc

Description: Definition of the category Cat, which consists of all categories in the universe u (i.e., " u -small categories", see Definition 3.44. of Adamek p. 39), with functors as the morphisms. Definition 3.47 of Adamek p. 40. We do not introduce a specific definition for " u -large categories", which can be expressed as ( Cat \ u ) . (Contributed by Mario Carneiro, 3-Jan-2017)

Ref Expression
Assertion df-catc CatCat = ( 𝑢 ∈ V ↦ ( 𝑢 ∩ Cat ) / 𝑏 { ⟨ ( Base ‘ ndx ) , 𝑏 ⟩ , ⟨ ( Hom ‘ ndx ) , ( 𝑥𝑏 , 𝑦𝑏 ↦ ( 𝑥 Func 𝑦 ) ) ⟩ , ⟨ ( comp ‘ ndx ) , ( 𝑣 ∈ ( 𝑏 × 𝑏 ) , 𝑧𝑏 ↦ ( 𝑔 ∈ ( ( 2nd𝑣 ) Func 𝑧 ) , 𝑓 ∈ ( Func ‘ 𝑣 ) ↦ ( 𝑔func 𝑓 ) ) ) ⟩ } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 ccatc CatCat
1 vu 𝑢
2 cvv V
3 1 cv 𝑢
4 ccat Cat
5 3 4 cin ( 𝑢 ∩ Cat )
6 vb 𝑏
7 cbs Base
8 cnx ndx
9 8 7 cfv ( Base ‘ ndx )
10 6 cv 𝑏
11 9 10 cop ⟨ ( Base ‘ ndx ) , 𝑏
12 chom Hom
13 8 12 cfv ( Hom ‘ ndx )
14 vx 𝑥
15 vy 𝑦
16 14 cv 𝑥
17 cfunc Func
18 15 cv 𝑦
19 16 18 17 co ( 𝑥 Func 𝑦 )
20 14 15 10 10 19 cmpo ( 𝑥𝑏 , 𝑦𝑏 ↦ ( 𝑥 Func 𝑦 ) )
21 13 20 cop ⟨ ( Hom ‘ ndx ) , ( 𝑥𝑏 , 𝑦𝑏 ↦ ( 𝑥 Func 𝑦 ) ) ⟩
22 cco comp
23 8 22 cfv ( comp ‘ ndx )
24 vv 𝑣
25 10 10 cxp ( 𝑏 × 𝑏 )
26 vz 𝑧
27 vg 𝑔
28 c2nd 2nd
29 24 cv 𝑣
30 29 28 cfv ( 2nd𝑣 )
31 26 cv 𝑧
32 30 31 17 co ( ( 2nd𝑣 ) Func 𝑧 )
33 vf 𝑓
34 29 17 cfv ( Func ‘ 𝑣 )
35 27 cv 𝑔
36 ccofu func
37 33 cv 𝑓
38 35 37 36 co ( 𝑔func 𝑓 )
39 27 33 32 34 38 cmpo ( 𝑔 ∈ ( ( 2nd𝑣 ) Func 𝑧 ) , 𝑓 ∈ ( Func ‘ 𝑣 ) ↦ ( 𝑔func 𝑓 ) )
40 24 26 25 10 39 cmpo ( 𝑣 ∈ ( 𝑏 × 𝑏 ) , 𝑧𝑏 ↦ ( 𝑔 ∈ ( ( 2nd𝑣 ) Func 𝑧 ) , 𝑓 ∈ ( Func ‘ 𝑣 ) ↦ ( 𝑔func 𝑓 ) ) )
41 23 40 cop ⟨ ( comp ‘ ndx ) , ( 𝑣 ∈ ( 𝑏 × 𝑏 ) , 𝑧𝑏 ↦ ( 𝑔 ∈ ( ( 2nd𝑣 ) Func 𝑧 ) , 𝑓 ∈ ( Func ‘ 𝑣 ) ↦ ( 𝑔func 𝑓 ) ) ) ⟩
42 11 21 41 ctp { ⟨ ( Base ‘ ndx ) , 𝑏 ⟩ , ⟨ ( Hom ‘ ndx ) , ( 𝑥𝑏 , 𝑦𝑏 ↦ ( 𝑥 Func 𝑦 ) ) ⟩ , ⟨ ( comp ‘ ndx ) , ( 𝑣 ∈ ( 𝑏 × 𝑏 ) , 𝑧𝑏 ↦ ( 𝑔 ∈ ( ( 2nd𝑣 ) Func 𝑧 ) , 𝑓 ∈ ( Func ‘ 𝑣 ) ↦ ( 𝑔func 𝑓 ) ) ) ⟩ }
43 6 5 42 csb ( 𝑢 ∩ Cat ) / 𝑏 { ⟨ ( Base ‘ ndx ) , 𝑏 ⟩ , ⟨ ( Hom ‘ ndx ) , ( 𝑥𝑏 , 𝑦𝑏 ↦ ( 𝑥 Func 𝑦 ) ) ⟩ , ⟨ ( comp ‘ ndx ) , ( 𝑣 ∈ ( 𝑏 × 𝑏 ) , 𝑧𝑏 ↦ ( 𝑔 ∈ ( ( 2nd𝑣 ) Func 𝑧 ) , 𝑓 ∈ ( Func ‘ 𝑣 ) ↦ ( 𝑔func 𝑓 ) ) ) ⟩ }
44 1 2 43 cmpt ( 𝑢 ∈ V ↦ ( 𝑢 ∩ Cat ) / 𝑏 { ⟨ ( Base ‘ ndx ) , 𝑏 ⟩ , ⟨ ( Hom ‘ ndx ) , ( 𝑥𝑏 , 𝑦𝑏 ↦ ( 𝑥 Func 𝑦 ) ) ⟩ , ⟨ ( comp ‘ ndx ) , ( 𝑣 ∈ ( 𝑏 × 𝑏 ) , 𝑧𝑏 ↦ ( 𝑔 ∈ ( ( 2nd𝑣 ) Func 𝑧 ) , 𝑓 ∈ ( Func ‘ 𝑣 ) ↦ ( 𝑔func 𝑓 ) ) ) ⟩ } )
45 0 44 wceq CatCat = ( 𝑢 ∈ V ↦ ( 𝑢 ∩ Cat ) / 𝑏 { ⟨ ( Base ‘ ndx ) , 𝑏 ⟩ , ⟨ ( Hom ‘ ndx ) , ( 𝑥𝑏 , 𝑦𝑏 ↦ ( 𝑥 Func 𝑦 ) ) ⟩ , ⟨ ( comp ‘ ndx ) , ( 𝑣 ∈ ( 𝑏 × 𝑏 ) , 𝑧𝑏 ↦ ( 𝑔 ∈ ( ( 2nd𝑣 ) Func 𝑧 ) , 𝑓 ∈ ( Func ‘ 𝑣 ) ↦ ( 𝑔func 𝑓 ) ) ) ⟩ } )