Step |
Hyp |
Ref |
Expression |
0 |
|
ccau |
⊢ Cau |
1 |
|
vd |
⊢ 𝑑 |
2 |
|
cxmet |
⊢ ∞Met |
3 |
2
|
crn |
⊢ ran ∞Met |
4 |
3
|
cuni |
⊢ ∪ ran ∞Met |
5 |
|
vf |
⊢ 𝑓 |
6 |
1
|
cv |
⊢ 𝑑 |
7 |
6
|
cdm |
⊢ dom 𝑑 |
8 |
7
|
cdm |
⊢ dom dom 𝑑 |
9 |
|
cpm |
⊢ ↑pm |
10 |
|
cc |
⊢ ℂ |
11 |
8 10 9
|
co |
⊢ ( dom dom 𝑑 ↑pm ℂ ) |
12 |
|
vx |
⊢ 𝑥 |
13 |
|
crp |
⊢ ℝ+ |
14 |
|
vj |
⊢ 𝑗 |
15 |
|
cz |
⊢ ℤ |
16 |
5
|
cv |
⊢ 𝑓 |
17 |
|
cuz |
⊢ ℤ≥ |
18 |
14
|
cv |
⊢ 𝑗 |
19 |
18 17
|
cfv |
⊢ ( ℤ≥ ‘ 𝑗 ) |
20 |
16 19
|
cres |
⊢ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑗 ) ) |
21 |
18 16
|
cfv |
⊢ ( 𝑓 ‘ 𝑗 ) |
22 |
|
cbl |
⊢ ball |
23 |
6 22
|
cfv |
⊢ ( ball ‘ 𝑑 ) |
24 |
12
|
cv |
⊢ 𝑥 |
25 |
21 24 23
|
co |
⊢ ( ( 𝑓 ‘ 𝑗 ) ( ball ‘ 𝑑 ) 𝑥 ) |
26 |
19 25 20
|
wf |
⊢ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ( ( 𝑓 ‘ 𝑗 ) ( ball ‘ 𝑑 ) 𝑥 ) |
27 |
26 14 15
|
wrex |
⊢ ∃ 𝑗 ∈ ℤ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ( ( 𝑓 ‘ 𝑗 ) ( ball ‘ 𝑑 ) 𝑥 ) |
28 |
27 12 13
|
wral |
⊢ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℤ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ( ( 𝑓 ‘ 𝑗 ) ( ball ‘ 𝑑 ) 𝑥 ) |
29 |
28 5 11
|
crab |
⊢ { 𝑓 ∈ ( dom dom 𝑑 ↑pm ℂ ) ∣ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℤ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ( ( 𝑓 ‘ 𝑗 ) ( ball ‘ 𝑑 ) 𝑥 ) } |
30 |
1 4 29
|
cmpt |
⊢ ( 𝑑 ∈ ∪ ran ∞Met ↦ { 𝑓 ∈ ( dom dom 𝑑 ↑pm ℂ ) ∣ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℤ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ( ( 𝑓 ‘ 𝑗 ) ( ball ‘ 𝑑 ) 𝑥 ) } ) |
31 |
0 30
|
wceq |
⊢ Cau = ( 𝑑 ∈ ∪ ran ∞Met ↦ { 𝑓 ∈ ( dom dom 𝑑 ↑pm ℂ ) ∣ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℤ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ( ( 𝑓 ‘ 𝑗 ) ( ball ‘ 𝑑 ) 𝑥 ) } ) |