Metamath Proof Explorer


Definition df-cbn

Description: Define the class of all complex Banach spaces. (Contributed by NM, 5-Dec-2006) Use df-bn instead. (New usage is discouraged.)

Ref Expression
Assertion df-cbn CBan = { 𝑢 ∈ NrmCVec ∣ ( IndMet ‘ 𝑢 ) ∈ ( CMet ‘ ( BaseSet ‘ 𝑢 ) ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 ccbn CBan
1 vu 𝑢
2 cnv NrmCVec
3 cims IndMet
4 1 cv 𝑢
5 4 3 cfv ( IndMet ‘ 𝑢 )
6 ccmet CMet
7 cba BaseSet
8 4 7 cfv ( BaseSet ‘ 𝑢 )
9 8 6 cfv ( CMet ‘ ( BaseSet ‘ 𝑢 ) )
10 5 9 wcel ( IndMet ‘ 𝑢 ) ∈ ( CMet ‘ ( BaseSet ‘ 𝑢 ) )
11 10 1 2 crab { 𝑢 ∈ NrmCVec ∣ ( IndMet ‘ 𝑢 ) ∈ ( CMet ‘ ( BaseSet ‘ 𝑢 ) ) }
12 0 11 wceq CBan = { 𝑢 ∈ NrmCVec ∣ ( IndMet ‘ 𝑢 ) ∈ ( CMet ‘ ( BaseSet ‘ 𝑢 ) ) }