Metamath Proof Explorer


Definition df-cf

Description: Define the cofinality function. Definition B of Saharon Shelah, Cardinal Arithmetic (1994), p. xxx (Roman numeral 30). See cfval for its value and a description. (Contributed by NM, 1-Apr-2004)

Ref Expression
Assertion df-cf cf = ( 𝑥 ∈ On ↦ { 𝑦 ∣ ∃ 𝑧 ( 𝑦 = ( card ‘ 𝑧 ) ∧ ( 𝑧𝑥 ∧ ∀ 𝑣𝑥𝑢𝑧 𝑣𝑢 ) ) } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 ccf cf
1 vx 𝑥
2 con0 On
3 vy 𝑦
4 vz 𝑧
5 3 cv 𝑦
6 ccrd card
7 4 cv 𝑧
8 7 6 cfv ( card ‘ 𝑧 )
9 5 8 wceq 𝑦 = ( card ‘ 𝑧 )
10 1 cv 𝑥
11 7 10 wss 𝑧𝑥
12 vv 𝑣
13 vu 𝑢
14 12 cv 𝑣
15 13 cv 𝑢
16 14 15 wss 𝑣𝑢
17 16 13 7 wrex 𝑢𝑧 𝑣𝑢
18 17 12 10 wral 𝑣𝑥𝑢𝑧 𝑣𝑢
19 11 18 wa ( 𝑧𝑥 ∧ ∀ 𝑣𝑥𝑢𝑧 𝑣𝑢 )
20 9 19 wa ( 𝑦 = ( card ‘ 𝑧 ) ∧ ( 𝑧𝑥 ∧ ∀ 𝑣𝑥𝑢𝑧 𝑣𝑢 ) )
21 20 4 wex 𝑧 ( 𝑦 = ( card ‘ 𝑧 ) ∧ ( 𝑧𝑥 ∧ ∀ 𝑣𝑥𝑢𝑧 𝑣𝑢 ) )
22 21 3 cab { 𝑦 ∣ ∃ 𝑧 ( 𝑦 = ( card ‘ 𝑧 ) ∧ ( 𝑧𝑥 ∧ ∀ 𝑣𝑥𝑢𝑧 𝑣𝑢 ) ) }
23 22 cint { 𝑦 ∣ ∃ 𝑧 ( 𝑦 = ( card ‘ 𝑧 ) ∧ ( 𝑧𝑥 ∧ ∀ 𝑣𝑥𝑢𝑧 𝑣𝑢 ) ) }
24 1 2 23 cmpt ( 𝑥 ∈ On ↦ { 𝑦 ∣ ∃ 𝑧 ( 𝑦 = ( card ‘ 𝑧 ) ∧ ( 𝑧𝑥 ∧ ∀ 𝑣𝑥𝑢𝑧 𝑣𝑢 ) ) } )
25 0 24 wceq cf = ( 𝑥 ∈ On ↦ { 𝑦 ∣ ∃ 𝑧 ( 𝑦 = ( card ‘ 𝑧 ) ∧ ( 𝑧𝑥 ∧ ∀ 𝑣𝑥𝑢𝑧 𝑣𝑢 ) ) } )