| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 0 | 
							
								
							 | 
							ccf | 
							⊢ cf  | 
						
						
							| 1 | 
							
								
							 | 
							vx | 
							⊢ 𝑥  | 
						
						
							| 2 | 
							
								
							 | 
							con0 | 
							⊢ On  | 
						
						
							| 3 | 
							
								
							 | 
							vy | 
							⊢ 𝑦  | 
						
						
							| 4 | 
							
								
							 | 
							vz | 
							⊢ 𝑧  | 
						
						
							| 5 | 
							
								3
							 | 
							cv | 
							⊢ 𝑦  | 
						
						
							| 6 | 
							
								
							 | 
							ccrd | 
							⊢ card  | 
						
						
							| 7 | 
							
								4
							 | 
							cv | 
							⊢ 𝑧  | 
						
						
							| 8 | 
							
								7 6
							 | 
							cfv | 
							⊢ ( card ‘ 𝑧 )  | 
						
						
							| 9 | 
							
								5 8
							 | 
							wceq | 
							⊢ 𝑦  =  ( card ‘ 𝑧 )  | 
						
						
							| 10 | 
							
								1
							 | 
							cv | 
							⊢ 𝑥  | 
						
						
							| 11 | 
							
								7 10
							 | 
							wss | 
							⊢ 𝑧  ⊆  𝑥  | 
						
						
							| 12 | 
							
								
							 | 
							vv | 
							⊢ 𝑣  | 
						
						
							| 13 | 
							
								
							 | 
							vu | 
							⊢ 𝑢  | 
						
						
							| 14 | 
							
								12
							 | 
							cv | 
							⊢ 𝑣  | 
						
						
							| 15 | 
							
								13
							 | 
							cv | 
							⊢ 𝑢  | 
						
						
							| 16 | 
							
								14 15
							 | 
							wss | 
							⊢ 𝑣  ⊆  𝑢  | 
						
						
							| 17 | 
							
								16 13 7
							 | 
							wrex | 
							⊢ ∃ 𝑢  ∈  𝑧 𝑣  ⊆  𝑢  | 
						
						
							| 18 | 
							
								17 12 10
							 | 
							wral | 
							⊢ ∀ 𝑣  ∈  𝑥 ∃ 𝑢  ∈  𝑧 𝑣  ⊆  𝑢  | 
						
						
							| 19 | 
							
								11 18
							 | 
							wa | 
							⊢ ( 𝑧  ⊆  𝑥  ∧  ∀ 𝑣  ∈  𝑥 ∃ 𝑢  ∈  𝑧 𝑣  ⊆  𝑢 )  | 
						
						
							| 20 | 
							
								9 19
							 | 
							wa | 
							⊢ ( 𝑦  =  ( card ‘ 𝑧 )  ∧  ( 𝑧  ⊆  𝑥  ∧  ∀ 𝑣  ∈  𝑥 ∃ 𝑢  ∈  𝑧 𝑣  ⊆  𝑢 ) )  | 
						
						
							| 21 | 
							
								20 4
							 | 
							wex | 
							⊢ ∃ 𝑧 ( 𝑦  =  ( card ‘ 𝑧 )  ∧  ( 𝑧  ⊆  𝑥  ∧  ∀ 𝑣  ∈  𝑥 ∃ 𝑢  ∈  𝑧 𝑣  ⊆  𝑢 ) )  | 
						
						
							| 22 | 
							
								21 3
							 | 
							cab | 
							⊢ { 𝑦  ∣  ∃ 𝑧 ( 𝑦  =  ( card ‘ 𝑧 )  ∧  ( 𝑧  ⊆  𝑥  ∧  ∀ 𝑣  ∈  𝑥 ∃ 𝑢  ∈  𝑧 𝑣  ⊆  𝑢 ) ) }  | 
						
						
							| 23 | 
							
								22
							 | 
							cint | 
							⊢ ∩  { 𝑦  ∣  ∃ 𝑧 ( 𝑦  =  ( card ‘ 𝑧 )  ∧  ( 𝑧  ⊆  𝑥  ∧  ∀ 𝑣  ∈  𝑥 ∃ 𝑢  ∈  𝑧 𝑣  ⊆  𝑢 ) ) }  | 
						
						
							| 24 | 
							
								1 2 23
							 | 
							cmpt | 
							⊢ ( 𝑥  ∈  On  ↦  ∩  { 𝑦  ∣  ∃ 𝑧 ( 𝑦  =  ( card ‘ 𝑧 )  ∧  ( 𝑧  ⊆  𝑥  ∧  ∀ 𝑣  ∈  𝑥 ∃ 𝑢  ∈  𝑧 𝑣  ⊆  𝑢 ) ) } )  | 
						
						
							| 25 | 
							
								0 24
							 | 
							wceq | 
							⊢ cf  =  ( 𝑥  ∈  On  ↦  ∩  { 𝑦  ∣  ∃ 𝑧 ( 𝑦  =  ( card ‘ 𝑧 )  ∧  ( 𝑧  ⊆  𝑥  ∧  ∀ 𝑣  ∈  𝑥 ∃ 𝑢  ∈  𝑧 𝑣  ⊆  𝑢 ) ) } )  |