Step |
Hyp |
Ref |
Expression |
0 |
|
ccf |
⊢ cf |
1 |
|
vx |
⊢ 𝑥 |
2 |
|
con0 |
⊢ On |
3 |
|
vy |
⊢ 𝑦 |
4 |
|
vz |
⊢ 𝑧 |
5 |
3
|
cv |
⊢ 𝑦 |
6 |
|
ccrd |
⊢ card |
7 |
4
|
cv |
⊢ 𝑧 |
8 |
7 6
|
cfv |
⊢ ( card ‘ 𝑧 ) |
9 |
5 8
|
wceq |
⊢ 𝑦 = ( card ‘ 𝑧 ) |
10 |
1
|
cv |
⊢ 𝑥 |
11 |
7 10
|
wss |
⊢ 𝑧 ⊆ 𝑥 |
12 |
|
vv |
⊢ 𝑣 |
13 |
|
vu |
⊢ 𝑢 |
14 |
12
|
cv |
⊢ 𝑣 |
15 |
13
|
cv |
⊢ 𝑢 |
16 |
14 15
|
wss |
⊢ 𝑣 ⊆ 𝑢 |
17 |
16 13 7
|
wrex |
⊢ ∃ 𝑢 ∈ 𝑧 𝑣 ⊆ 𝑢 |
18 |
17 12 10
|
wral |
⊢ ∀ 𝑣 ∈ 𝑥 ∃ 𝑢 ∈ 𝑧 𝑣 ⊆ 𝑢 |
19 |
11 18
|
wa |
⊢ ( 𝑧 ⊆ 𝑥 ∧ ∀ 𝑣 ∈ 𝑥 ∃ 𝑢 ∈ 𝑧 𝑣 ⊆ 𝑢 ) |
20 |
9 19
|
wa |
⊢ ( 𝑦 = ( card ‘ 𝑧 ) ∧ ( 𝑧 ⊆ 𝑥 ∧ ∀ 𝑣 ∈ 𝑥 ∃ 𝑢 ∈ 𝑧 𝑣 ⊆ 𝑢 ) ) |
21 |
20 4
|
wex |
⊢ ∃ 𝑧 ( 𝑦 = ( card ‘ 𝑧 ) ∧ ( 𝑧 ⊆ 𝑥 ∧ ∀ 𝑣 ∈ 𝑥 ∃ 𝑢 ∈ 𝑧 𝑣 ⊆ 𝑢 ) ) |
22 |
21 3
|
cab |
⊢ { 𝑦 ∣ ∃ 𝑧 ( 𝑦 = ( card ‘ 𝑧 ) ∧ ( 𝑧 ⊆ 𝑥 ∧ ∀ 𝑣 ∈ 𝑥 ∃ 𝑢 ∈ 𝑧 𝑣 ⊆ 𝑢 ) ) } |
23 |
22
|
cint |
⊢ ∩ { 𝑦 ∣ ∃ 𝑧 ( 𝑦 = ( card ‘ 𝑧 ) ∧ ( 𝑧 ⊆ 𝑥 ∧ ∀ 𝑣 ∈ 𝑥 ∃ 𝑢 ∈ 𝑧 𝑣 ⊆ 𝑢 ) ) } |
24 |
1 2 23
|
cmpt |
⊢ ( 𝑥 ∈ On ↦ ∩ { 𝑦 ∣ ∃ 𝑧 ( 𝑦 = ( card ‘ 𝑧 ) ∧ ( 𝑧 ⊆ 𝑥 ∧ ∀ 𝑣 ∈ 𝑥 ∃ 𝑢 ∈ 𝑧 𝑣 ⊆ 𝑢 ) ) } ) |
25 |
0 24
|
wceq |
⊢ cf = ( 𝑥 ∈ On ↦ ∩ { 𝑦 ∣ ∃ 𝑧 ( 𝑦 = ( card ‘ 𝑧 ) ∧ ( 𝑧 ⊆ 𝑥 ∧ ∀ 𝑣 ∈ 𝑥 ∃ 𝑢 ∈ 𝑧 𝑣 ⊆ 𝑢 ) ) } ) |