| Step | Hyp | Ref | Expression | 
						
							| 0 |  | ccf | ⊢ cf | 
						
							| 1 |  | vx | ⊢ 𝑥 | 
						
							| 2 |  | con0 | ⊢ On | 
						
							| 3 |  | vy | ⊢ 𝑦 | 
						
							| 4 |  | vz | ⊢ 𝑧 | 
						
							| 5 | 3 | cv | ⊢ 𝑦 | 
						
							| 6 |  | ccrd | ⊢ card | 
						
							| 7 | 4 | cv | ⊢ 𝑧 | 
						
							| 8 | 7 6 | cfv | ⊢ ( card ‘ 𝑧 ) | 
						
							| 9 | 5 8 | wceq | ⊢ 𝑦  =  ( card ‘ 𝑧 ) | 
						
							| 10 | 1 | cv | ⊢ 𝑥 | 
						
							| 11 | 7 10 | wss | ⊢ 𝑧  ⊆  𝑥 | 
						
							| 12 |  | vv | ⊢ 𝑣 | 
						
							| 13 |  | vu | ⊢ 𝑢 | 
						
							| 14 | 12 | cv | ⊢ 𝑣 | 
						
							| 15 | 13 | cv | ⊢ 𝑢 | 
						
							| 16 | 14 15 | wss | ⊢ 𝑣  ⊆  𝑢 | 
						
							| 17 | 16 13 7 | wrex | ⊢ ∃ 𝑢  ∈  𝑧 𝑣  ⊆  𝑢 | 
						
							| 18 | 17 12 10 | wral | ⊢ ∀ 𝑣  ∈  𝑥 ∃ 𝑢  ∈  𝑧 𝑣  ⊆  𝑢 | 
						
							| 19 | 11 18 | wa | ⊢ ( 𝑧  ⊆  𝑥  ∧  ∀ 𝑣  ∈  𝑥 ∃ 𝑢  ∈  𝑧 𝑣  ⊆  𝑢 ) | 
						
							| 20 | 9 19 | wa | ⊢ ( 𝑦  =  ( card ‘ 𝑧 )  ∧  ( 𝑧  ⊆  𝑥  ∧  ∀ 𝑣  ∈  𝑥 ∃ 𝑢  ∈  𝑧 𝑣  ⊆  𝑢 ) ) | 
						
							| 21 | 20 4 | wex | ⊢ ∃ 𝑧 ( 𝑦  =  ( card ‘ 𝑧 )  ∧  ( 𝑧  ⊆  𝑥  ∧  ∀ 𝑣  ∈  𝑥 ∃ 𝑢  ∈  𝑧 𝑣  ⊆  𝑢 ) ) | 
						
							| 22 | 21 3 | cab | ⊢ { 𝑦  ∣  ∃ 𝑧 ( 𝑦  =  ( card ‘ 𝑧 )  ∧  ( 𝑧  ⊆  𝑥  ∧  ∀ 𝑣  ∈  𝑥 ∃ 𝑢  ∈  𝑧 𝑣  ⊆  𝑢 ) ) } | 
						
							| 23 | 22 | cint | ⊢ ∩  { 𝑦  ∣  ∃ 𝑧 ( 𝑦  =  ( card ‘ 𝑧 )  ∧  ( 𝑧  ⊆  𝑥  ∧  ∀ 𝑣  ∈  𝑥 ∃ 𝑢  ∈  𝑧 𝑣  ⊆  𝑢 ) ) } | 
						
							| 24 | 1 2 23 | cmpt | ⊢ ( 𝑥  ∈  On  ↦  ∩  { 𝑦  ∣  ∃ 𝑧 ( 𝑦  =  ( card ‘ 𝑧 )  ∧  ( 𝑧  ⊆  𝑥  ∧  ∀ 𝑣  ∈  𝑥 ∃ 𝑢  ∈  𝑧 𝑣  ⊆  𝑢 ) ) } ) | 
						
							| 25 | 0 24 | wceq | ⊢ cf  =  ( 𝑥  ∈  On  ↦  ∩  { 𝑦  ∣  ∃ 𝑧 ( 𝑦  =  ( card ‘ 𝑧 )  ∧  ( 𝑧  ⊆  𝑥  ∧  ∀ 𝑣  ∈  𝑥 ∃ 𝑢  ∈  𝑧 𝑣  ⊆  𝑢 ) ) } ) |