Step |
Hyp |
Ref |
Expression |
0 |
|
ccfil |
⊢ CauFil |
1 |
|
vd |
⊢ 𝑑 |
2 |
|
cxmet |
⊢ ∞Met |
3 |
2
|
crn |
⊢ ran ∞Met |
4 |
3
|
cuni |
⊢ ∪ ran ∞Met |
5 |
|
vf |
⊢ 𝑓 |
6 |
|
cfil |
⊢ Fil |
7 |
1
|
cv |
⊢ 𝑑 |
8 |
7
|
cdm |
⊢ dom 𝑑 |
9 |
8
|
cdm |
⊢ dom dom 𝑑 |
10 |
9 6
|
cfv |
⊢ ( Fil ‘ dom dom 𝑑 ) |
11 |
|
vx |
⊢ 𝑥 |
12 |
|
crp |
⊢ ℝ+ |
13 |
|
vy |
⊢ 𝑦 |
14 |
5
|
cv |
⊢ 𝑓 |
15 |
13
|
cv |
⊢ 𝑦 |
16 |
15 15
|
cxp |
⊢ ( 𝑦 × 𝑦 ) |
17 |
7 16
|
cima |
⊢ ( 𝑑 “ ( 𝑦 × 𝑦 ) ) |
18 |
|
cc0 |
⊢ 0 |
19 |
|
cico |
⊢ [,) |
20 |
11
|
cv |
⊢ 𝑥 |
21 |
18 20 19
|
co |
⊢ ( 0 [,) 𝑥 ) |
22 |
17 21
|
wss |
⊢ ( 𝑑 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) |
23 |
22 13 14
|
wrex |
⊢ ∃ 𝑦 ∈ 𝑓 ( 𝑑 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) |
24 |
23 11 12
|
wral |
⊢ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝑓 ( 𝑑 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) |
25 |
24 5 10
|
crab |
⊢ { 𝑓 ∈ ( Fil ‘ dom dom 𝑑 ) ∣ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝑓 ( 𝑑 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) } |
26 |
1 4 25
|
cmpt |
⊢ ( 𝑑 ∈ ∪ ran ∞Met ↦ { 𝑓 ∈ ( Fil ‘ dom dom 𝑑 ) ∣ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝑓 ( 𝑑 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) } ) |
27 |
0 26
|
wceq |
⊢ CauFil = ( 𝑑 ∈ ∪ ran ∞Met ↦ { 𝑓 ∈ ( Fil ‘ dom dom 𝑑 ) ∣ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝑓 ( 𝑑 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) } ) |