| Step | Hyp | Ref | Expression | 
						
							| 0 |  | ccfil | ⊢ CauFil | 
						
							| 1 |  | vd | ⊢ 𝑑 | 
						
							| 2 |  | cxmet | ⊢ ∞Met | 
						
							| 3 | 2 | crn | ⊢ ran  ∞Met | 
						
							| 4 | 3 | cuni | ⊢ ∪  ran  ∞Met | 
						
							| 5 |  | vf | ⊢ 𝑓 | 
						
							| 6 |  | cfil | ⊢ Fil | 
						
							| 7 | 1 | cv | ⊢ 𝑑 | 
						
							| 8 | 7 | cdm | ⊢ dom  𝑑 | 
						
							| 9 | 8 | cdm | ⊢ dom  dom  𝑑 | 
						
							| 10 | 9 6 | cfv | ⊢ ( Fil ‘ dom  dom  𝑑 ) | 
						
							| 11 |  | vx | ⊢ 𝑥 | 
						
							| 12 |  | crp | ⊢ ℝ+ | 
						
							| 13 |  | vy | ⊢ 𝑦 | 
						
							| 14 | 5 | cv | ⊢ 𝑓 | 
						
							| 15 | 13 | cv | ⊢ 𝑦 | 
						
							| 16 | 15 15 | cxp | ⊢ ( 𝑦  ×  𝑦 ) | 
						
							| 17 | 7 16 | cima | ⊢ ( 𝑑  “  ( 𝑦  ×  𝑦 ) ) | 
						
							| 18 |  | cc0 | ⊢ 0 | 
						
							| 19 |  | cico | ⊢ [,) | 
						
							| 20 | 11 | cv | ⊢ 𝑥 | 
						
							| 21 | 18 20 19 | co | ⊢ ( 0 [,) 𝑥 ) | 
						
							| 22 | 17 21 | wss | ⊢ ( 𝑑  “  ( 𝑦  ×  𝑦 ) )  ⊆  ( 0 [,) 𝑥 ) | 
						
							| 23 | 22 13 14 | wrex | ⊢ ∃ 𝑦  ∈  𝑓 ( 𝑑  “  ( 𝑦  ×  𝑦 ) )  ⊆  ( 0 [,) 𝑥 ) | 
						
							| 24 | 23 11 12 | wral | ⊢ ∀ 𝑥  ∈  ℝ+ ∃ 𝑦  ∈  𝑓 ( 𝑑  “  ( 𝑦  ×  𝑦 ) )  ⊆  ( 0 [,) 𝑥 ) | 
						
							| 25 | 24 5 10 | crab | ⊢ { 𝑓  ∈  ( Fil ‘ dom  dom  𝑑 )  ∣  ∀ 𝑥  ∈  ℝ+ ∃ 𝑦  ∈  𝑓 ( 𝑑  “  ( 𝑦  ×  𝑦 ) )  ⊆  ( 0 [,) 𝑥 ) } | 
						
							| 26 | 1 4 25 | cmpt | ⊢ ( 𝑑  ∈  ∪  ran  ∞Met  ↦  { 𝑓  ∈  ( Fil ‘ dom  dom  𝑑 )  ∣  ∀ 𝑥  ∈  ℝ+ ∃ 𝑦  ∈  𝑓 ( 𝑑  “  ( 𝑦  ×  𝑦 ) )  ⊆  ( 0 [,) 𝑥 ) } ) | 
						
							| 27 | 0 26 | wceq | ⊢ CauFil  =  ( 𝑑  ∈  ∪  ran  ∞Met  ↦  { 𝑓  ∈  ( Fil ‘ dom  dom  𝑑 )  ∣  ∀ 𝑥  ∈  ℝ+ ∃ 𝑦  ∈  𝑓 ( 𝑑  “  ( 𝑦  ×  𝑦 ) )  ⊆  ( 0 [,) 𝑥 ) } ) |