Metamath Proof Explorer


Definition df-cfilu

Description: Define the set of Cauchy filter bases on a uniform space. A Cauchy filter base is a filter base on the set such that for every entourage v , there is an element a of the filter "small enough in v " i.e. such that every pair { x , y } of points in a is related by v ". Definition 2 of BourbakiTop1 p. II.13. (Contributed by Thierry Arnoux, 16-Nov-2017)

Ref Expression
Assertion df-cfilu CauFilu = ( 𝑢 ran UnifOn ↦ { 𝑓 ∈ ( fBas ‘ dom 𝑢 ) ∣ ∀ 𝑣𝑢𝑎𝑓 ( 𝑎 × 𝑎 ) ⊆ 𝑣 } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 ccfilu CauFilu
1 vu 𝑢
2 cust UnifOn
3 2 crn ran UnifOn
4 3 cuni ran UnifOn
5 vf 𝑓
6 cfbas fBas
7 1 cv 𝑢
8 7 cuni 𝑢
9 8 cdm dom 𝑢
10 9 6 cfv ( fBas ‘ dom 𝑢 )
11 vv 𝑣
12 va 𝑎
13 5 cv 𝑓
14 12 cv 𝑎
15 14 14 cxp ( 𝑎 × 𝑎 )
16 11 cv 𝑣
17 15 16 wss ( 𝑎 × 𝑎 ) ⊆ 𝑣
18 17 12 13 wrex 𝑎𝑓 ( 𝑎 × 𝑎 ) ⊆ 𝑣
19 18 11 7 wral 𝑣𝑢𝑎𝑓 ( 𝑎 × 𝑎 ) ⊆ 𝑣
20 19 5 10 crab { 𝑓 ∈ ( fBas ‘ dom 𝑢 ) ∣ ∀ 𝑣𝑢𝑎𝑓 ( 𝑎 × 𝑎 ) ⊆ 𝑣 }
21 1 4 20 cmpt ( 𝑢 ran UnifOn ↦ { 𝑓 ∈ ( fBas ‘ dom 𝑢 ) ∣ ∀ 𝑣𝑢𝑎𝑓 ( 𝑎 × 𝑎 ) ⊆ 𝑣 } )
22 0 21 wceq CauFilu = ( 𝑢 ran UnifOn ↦ { 𝑓 ∈ ( fBas ‘ dom 𝑢 ) ∣ ∀ 𝑣𝑢𝑎𝑓 ( 𝑎 × 𝑎 ) ⊆ 𝑣 } )