| Step |
Hyp |
Ref |
Expression |
| 0 |
|
ccgra |
⊢ cgrA |
| 1 |
|
vg |
⊢ 𝑔 |
| 2 |
|
cvv |
⊢ V |
| 3 |
|
va |
⊢ 𝑎 |
| 4 |
|
vb |
⊢ 𝑏 |
| 5 |
|
cbs |
⊢ Base |
| 6 |
1
|
cv |
⊢ 𝑔 |
| 7 |
6 5
|
cfv |
⊢ ( Base ‘ 𝑔 ) |
| 8 |
|
vp |
⊢ 𝑝 |
| 9 |
|
chlg |
⊢ hlG |
| 10 |
6 9
|
cfv |
⊢ ( hlG ‘ 𝑔 ) |
| 11 |
|
vk |
⊢ 𝑘 |
| 12 |
3
|
cv |
⊢ 𝑎 |
| 13 |
8
|
cv |
⊢ 𝑝 |
| 14 |
|
cmap |
⊢ ↑m |
| 15 |
|
cc0 |
⊢ 0 |
| 16 |
|
cfzo |
⊢ ..^ |
| 17 |
|
c3 |
⊢ 3 |
| 18 |
15 17 16
|
co |
⊢ ( 0 ..^ 3 ) |
| 19 |
13 18 14
|
co |
⊢ ( 𝑝 ↑m ( 0 ..^ 3 ) ) |
| 20 |
12 19
|
wcel |
⊢ 𝑎 ∈ ( 𝑝 ↑m ( 0 ..^ 3 ) ) |
| 21 |
4
|
cv |
⊢ 𝑏 |
| 22 |
21 19
|
wcel |
⊢ 𝑏 ∈ ( 𝑝 ↑m ( 0 ..^ 3 ) ) |
| 23 |
20 22
|
wa |
⊢ ( 𝑎 ∈ ( 𝑝 ↑m ( 0 ..^ 3 ) ) ∧ 𝑏 ∈ ( 𝑝 ↑m ( 0 ..^ 3 ) ) ) |
| 24 |
|
vx |
⊢ 𝑥 |
| 25 |
|
vy |
⊢ 𝑦 |
| 26 |
|
ccgrg |
⊢ cgrG |
| 27 |
6 26
|
cfv |
⊢ ( cgrG ‘ 𝑔 ) |
| 28 |
24
|
cv |
⊢ 𝑥 |
| 29 |
|
c1 |
⊢ 1 |
| 30 |
29 21
|
cfv |
⊢ ( 𝑏 ‘ 1 ) |
| 31 |
25
|
cv |
⊢ 𝑦 |
| 32 |
28 30 31
|
cs3 |
⊢ 〈“ 𝑥 ( 𝑏 ‘ 1 ) 𝑦 ”〉 |
| 33 |
12 32 27
|
wbr |
⊢ 𝑎 ( cgrG ‘ 𝑔 ) 〈“ 𝑥 ( 𝑏 ‘ 1 ) 𝑦 ”〉 |
| 34 |
11
|
cv |
⊢ 𝑘 |
| 35 |
30 34
|
cfv |
⊢ ( 𝑘 ‘ ( 𝑏 ‘ 1 ) ) |
| 36 |
15 21
|
cfv |
⊢ ( 𝑏 ‘ 0 ) |
| 37 |
28 36 35
|
wbr |
⊢ 𝑥 ( 𝑘 ‘ ( 𝑏 ‘ 1 ) ) ( 𝑏 ‘ 0 ) |
| 38 |
|
c2 |
⊢ 2 |
| 39 |
38 21
|
cfv |
⊢ ( 𝑏 ‘ 2 ) |
| 40 |
31 39 35
|
wbr |
⊢ 𝑦 ( 𝑘 ‘ ( 𝑏 ‘ 1 ) ) ( 𝑏 ‘ 2 ) |
| 41 |
33 37 40
|
w3a |
⊢ ( 𝑎 ( cgrG ‘ 𝑔 ) 〈“ 𝑥 ( 𝑏 ‘ 1 ) 𝑦 ”〉 ∧ 𝑥 ( 𝑘 ‘ ( 𝑏 ‘ 1 ) ) ( 𝑏 ‘ 0 ) ∧ 𝑦 ( 𝑘 ‘ ( 𝑏 ‘ 1 ) ) ( 𝑏 ‘ 2 ) ) |
| 42 |
41 25 13
|
wrex |
⊢ ∃ 𝑦 ∈ 𝑝 ( 𝑎 ( cgrG ‘ 𝑔 ) 〈“ 𝑥 ( 𝑏 ‘ 1 ) 𝑦 ”〉 ∧ 𝑥 ( 𝑘 ‘ ( 𝑏 ‘ 1 ) ) ( 𝑏 ‘ 0 ) ∧ 𝑦 ( 𝑘 ‘ ( 𝑏 ‘ 1 ) ) ( 𝑏 ‘ 2 ) ) |
| 43 |
42 24 13
|
wrex |
⊢ ∃ 𝑥 ∈ 𝑝 ∃ 𝑦 ∈ 𝑝 ( 𝑎 ( cgrG ‘ 𝑔 ) 〈“ 𝑥 ( 𝑏 ‘ 1 ) 𝑦 ”〉 ∧ 𝑥 ( 𝑘 ‘ ( 𝑏 ‘ 1 ) ) ( 𝑏 ‘ 0 ) ∧ 𝑦 ( 𝑘 ‘ ( 𝑏 ‘ 1 ) ) ( 𝑏 ‘ 2 ) ) |
| 44 |
23 43
|
wa |
⊢ ( ( 𝑎 ∈ ( 𝑝 ↑m ( 0 ..^ 3 ) ) ∧ 𝑏 ∈ ( 𝑝 ↑m ( 0 ..^ 3 ) ) ) ∧ ∃ 𝑥 ∈ 𝑝 ∃ 𝑦 ∈ 𝑝 ( 𝑎 ( cgrG ‘ 𝑔 ) 〈“ 𝑥 ( 𝑏 ‘ 1 ) 𝑦 ”〉 ∧ 𝑥 ( 𝑘 ‘ ( 𝑏 ‘ 1 ) ) ( 𝑏 ‘ 0 ) ∧ 𝑦 ( 𝑘 ‘ ( 𝑏 ‘ 1 ) ) ( 𝑏 ‘ 2 ) ) ) |
| 45 |
44 11 10
|
wsbc |
⊢ [ ( hlG ‘ 𝑔 ) / 𝑘 ] ( ( 𝑎 ∈ ( 𝑝 ↑m ( 0 ..^ 3 ) ) ∧ 𝑏 ∈ ( 𝑝 ↑m ( 0 ..^ 3 ) ) ) ∧ ∃ 𝑥 ∈ 𝑝 ∃ 𝑦 ∈ 𝑝 ( 𝑎 ( cgrG ‘ 𝑔 ) 〈“ 𝑥 ( 𝑏 ‘ 1 ) 𝑦 ”〉 ∧ 𝑥 ( 𝑘 ‘ ( 𝑏 ‘ 1 ) ) ( 𝑏 ‘ 0 ) ∧ 𝑦 ( 𝑘 ‘ ( 𝑏 ‘ 1 ) ) ( 𝑏 ‘ 2 ) ) ) |
| 46 |
45 8 7
|
wsbc |
⊢ [ ( Base ‘ 𝑔 ) / 𝑝 ] [ ( hlG ‘ 𝑔 ) / 𝑘 ] ( ( 𝑎 ∈ ( 𝑝 ↑m ( 0 ..^ 3 ) ) ∧ 𝑏 ∈ ( 𝑝 ↑m ( 0 ..^ 3 ) ) ) ∧ ∃ 𝑥 ∈ 𝑝 ∃ 𝑦 ∈ 𝑝 ( 𝑎 ( cgrG ‘ 𝑔 ) 〈“ 𝑥 ( 𝑏 ‘ 1 ) 𝑦 ”〉 ∧ 𝑥 ( 𝑘 ‘ ( 𝑏 ‘ 1 ) ) ( 𝑏 ‘ 0 ) ∧ 𝑦 ( 𝑘 ‘ ( 𝑏 ‘ 1 ) ) ( 𝑏 ‘ 2 ) ) ) |
| 47 |
46 3 4
|
copab |
⊢ { 〈 𝑎 , 𝑏 〉 ∣ [ ( Base ‘ 𝑔 ) / 𝑝 ] [ ( hlG ‘ 𝑔 ) / 𝑘 ] ( ( 𝑎 ∈ ( 𝑝 ↑m ( 0 ..^ 3 ) ) ∧ 𝑏 ∈ ( 𝑝 ↑m ( 0 ..^ 3 ) ) ) ∧ ∃ 𝑥 ∈ 𝑝 ∃ 𝑦 ∈ 𝑝 ( 𝑎 ( cgrG ‘ 𝑔 ) 〈“ 𝑥 ( 𝑏 ‘ 1 ) 𝑦 ”〉 ∧ 𝑥 ( 𝑘 ‘ ( 𝑏 ‘ 1 ) ) ( 𝑏 ‘ 0 ) ∧ 𝑦 ( 𝑘 ‘ ( 𝑏 ‘ 1 ) ) ( 𝑏 ‘ 2 ) ) ) } |
| 48 |
1 2 47
|
cmpt |
⊢ ( 𝑔 ∈ V ↦ { 〈 𝑎 , 𝑏 〉 ∣ [ ( Base ‘ 𝑔 ) / 𝑝 ] [ ( hlG ‘ 𝑔 ) / 𝑘 ] ( ( 𝑎 ∈ ( 𝑝 ↑m ( 0 ..^ 3 ) ) ∧ 𝑏 ∈ ( 𝑝 ↑m ( 0 ..^ 3 ) ) ) ∧ ∃ 𝑥 ∈ 𝑝 ∃ 𝑦 ∈ 𝑝 ( 𝑎 ( cgrG ‘ 𝑔 ) 〈“ 𝑥 ( 𝑏 ‘ 1 ) 𝑦 ”〉 ∧ 𝑥 ( 𝑘 ‘ ( 𝑏 ‘ 1 ) ) ( 𝑏 ‘ 0 ) ∧ 𝑦 ( 𝑘 ‘ ( 𝑏 ‘ 1 ) ) ( 𝑏 ‘ 2 ) ) ) } ) |
| 49 |
0 48
|
wceq |
⊢ cgrA = ( 𝑔 ∈ V ↦ { 〈 𝑎 , 𝑏 〉 ∣ [ ( Base ‘ 𝑔 ) / 𝑝 ] [ ( hlG ‘ 𝑔 ) / 𝑘 ] ( ( 𝑎 ∈ ( 𝑝 ↑m ( 0 ..^ 3 ) ) ∧ 𝑏 ∈ ( 𝑝 ↑m ( 0 ..^ 3 ) ) ) ∧ ∃ 𝑥 ∈ 𝑝 ∃ 𝑦 ∈ 𝑝 ( 𝑎 ( cgrG ‘ 𝑔 ) 〈“ 𝑥 ( 𝑏 ‘ 1 ) 𝑦 ”〉 ∧ 𝑥 ( 𝑘 ‘ ( 𝑏 ‘ 1 ) ) ( 𝑏 ‘ 0 ) ∧ 𝑦 ( 𝑘 ‘ ( 𝑏 ‘ 1 ) ) ( 𝑏 ‘ 2 ) ) ) } ) |