Metamath Proof Explorer


Definition df-chp

Description: Define the second Chebyshev function, which adds up the logarithms of the primes corresponding to the prime powers less than x , see definition in ApostolNT p. 75. (Contributed by Mario Carneiro, 7-Apr-2016)

Ref Expression
Assertion df-chp ψ = ( 𝑥 ∈ ℝ ↦ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( Λ ‘ 𝑛 ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cchp ψ
1 vx 𝑥
2 cr
3 vn 𝑛
4 c1 1
5 cfz ...
6 cfl
7 1 cv 𝑥
8 7 6 cfv ( ⌊ ‘ 𝑥 )
9 4 8 5 co ( 1 ... ( ⌊ ‘ 𝑥 ) )
10 cvma Λ
11 3 cv 𝑛
12 11 10 cfv ( Λ ‘ 𝑛 )
13 9 12 3 csu Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( Λ ‘ 𝑛 )
14 1 2 13 cmpt ( 𝑥 ∈ ℝ ↦ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( Λ ‘ 𝑛 ) )
15 0 14 wceq ψ = ( 𝑥 ∈ ℝ ↦ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( Λ ‘ 𝑛 ) )