| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cchpmat |
⊢ CharPlyMat |
| 1 |
|
vn |
⊢ 𝑛 |
| 2 |
|
cfn |
⊢ Fin |
| 3 |
|
vr |
⊢ 𝑟 |
| 4 |
|
cvv |
⊢ V |
| 5 |
|
vm |
⊢ 𝑚 |
| 6 |
|
cbs |
⊢ Base |
| 7 |
1
|
cv |
⊢ 𝑛 |
| 8 |
|
cmat |
⊢ Mat |
| 9 |
3
|
cv |
⊢ 𝑟 |
| 10 |
7 9 8
|
co |
⊢ ( 𝑛 Mat 𝑟 ) |
| 11 |
10 6
|
cfv |
⊢ ( Base ‘ ( 𝑛 Mat 𝑟 ) ) |
| 12 |
|
cmdat |
⊢ maDet |
| 13 |
|
cpl1 |
⊢ Poly1 |
| 14 |
9 13
|
cfv |
⊢ ( Poly1 ‘ 𝑟 ) |
| 15 |
7 14 12
|
co |
⊢ ( 𝑛 maDet ( Poly1 ‘ 𝑟 ) ) |
| 16 |
|
cv1 |
⊢ var1 |
| 17 |
9 16
|
cfv |
⊢ ( var1 ‘ 𝑟 ) |
| 18 |
|
cvsca |
⊢ ·𝑠 |
| 19 |
7 14 8
|
co |
⊢ ( 𝑛 Mat ( Poly1 ‘ 𝑟 ) ) |
| 20 |
19 18
|
cfv |
⊢ ( ·𝑠 ‘ ( 𝑛 Mat ( Poly1 ‘ 𝑟 ) ) ) |
| 21 |
|
cur |
⊢ 1r |
| 22 |
19 21
|
cfv |
⊢ ( 1r ‘ ( 𝑛 Mat ( Poly1 ‘ 𝑟 ) ) ) |
| 23 |
17 22 20
|
co |
⊢ ( ( var1 ‘ 𝑟 ) ( ·𝑠 ‘ ( 𝑛 Mat ( Poly1 ‘ 𝑟 ) ) ) ( 1r ‘ ( 𝑛 Mat ( Poly1 ‘ 𝑟 ) ) ) ) |
| 24 |
|
csg |
⊢ -g |
| 25 |
19 24
|
cfv |
⊢ ( -g ‘ ( 𝑛 Mat ( Poly1 ‘ 𝑟 ) ) ) |
| 26 |
|
cmat2pmat |
⊢ matToPolyMat |
| 27 |
7 9 26
|
co |
⊢ ( 𝑛 matToPolyMat 𝑟 ) |
| 28 |
5
|
cv |
⊢ 𝑚 |
| 29 |
28 27
|
cfv |
⊢ ( ( 𝑛 matToPolyMat 𝑟 ) ‘ 𝑚 ) |
| 30 |
23 29 25
|
co |
⊢ ( ( ( var1 ‘ 𝑟 ) ( ·𝑠 ‘ ( 𝑛 Mat ( Poly1 ‘ 𝑟 ) ) ) ( 1r ‘ ( 𝑛 Mat ( Poly1 ‘ 𝑟 ) ) ) ) ( -g ‘ ( 𝑛 Mat ( Poly1 ‘ 𝑟 ) ) ) ( ( 𝑛 matToPolyMat 𝑟 ) ‘ 𝑚 ) ) |
| 31 |
30 15
|
cfv |
⊢ ( ( 𝑛 maDet ( Poly1 ‘ 𝑟 ) ) ‘ ( ( ( var1 ‘ 𝑟 ) ( ·𝑠 ‘ ( 𝑛 Mat ( Poly1 ‘ 𝑟 ) ) ) ( 1r ‘ ( 𝑛 Mat ( Poly1 ‘ 𝑟 ) ) ) ) ( -g ‘ ( 𝑛 Mat ( Poly1 ‘ 𝑟 ) ) ) ( ( 𝑛 matToPolyMat 𝑟 ) ‘ 𝑚 ) ) ) |
| 32 |
5 11 31
|
cmpt |
⊢ ( 𝑚 ∈ ( Base ‘ ( 𝑛 Mat 𝑟 ) ) ↦ ( ( 𝑛 maDet ( Poly1 ‘ 𝑟 ) ) ‘ ( ( ( var1 ‘ 𝑟 ) ( ·𝑠 ‘ ( 𝑛 Mat ( Poly1 ‘ 𝑟 ) ) ) ( 1r ‘ ( 𝑛 Mat ( Poly1 ‘ 𝑟 ) ) ) ) ( -g ‘ ( 𝑛 Mat ( Poly1 ‘ 𝑟 ) ) ) ( ( 𝑛 matToPolyMat 𝑟 ) ‘ 𝑚 ) ) ) ) |
| 33 |
1 3 2 4 32
|
cmpo |
⊢ ( 𝑛 ∈ Fin , 𝑟 ∈ V ↦ ( 𝑚 ∈ ( Base ‘ ( 𝑛 Mat 𝑟 ) ) ↦ ( ( 𝑛 maDet ( Poly1 ‘ 𝑟 ) ) ‘ ( ( ( var1 ‘ 𝑟 ) ( ·𝑠 ‘ ( 𝑛 Mat ( Poly1 ‘ 𝑟 ) ) ) ( 1r ‘ ( 𝑛 Mat ( Poly1 ‘ 𝑟 ) ) ) ) ( -g ‘ ( 𝑛 Mat ( Poly1 ‘ 𝑟 ) ) ) ( ( 𝑛 matToPolyMat 𝑟 ) ‘ 𝑚 ) ) ) ) ) |
| 34 |
0 33
|
wceq |
⊢ CharPlyMat = ( 𝑛 ∈ Fin , 𝑟 ∈ V ↦ ( 𝑚 ∈ ( Base ‘ ( 𝑛 Mat 𝑟 ) ) ↦ ( ( 𝑛 maDet ( Poly1 ‘ 𝑟 ) ) ‘ ( ( ( var1 ‘ 𝑟 ) ( ·𝑠 ‘ ( 𝑛 Mat ( Poly1 ‘ 𝑟 ) ) ) ( 1r ‘ ( 𝑛 Mat ( Poly1 ‘ 𝑟 ) ) ) ) ( -g ‘ ( 𝑛 Mat ( Poly1 ‘ 𝑟 ) ) ) ( ( 𝑛 matToPolyMat 𝑟 ) ‘ 𝑚 ) ) ) ) ) |