Metamath Proof Explorer


Definition df-chpmat

Description: Define the characteristic polynomial of a square matrix. According to Wikipedia ("Characteristic polynomial", 31-Jul-2019, https://en.wikipedia.org/wiki/Characteristic_polynomial ): "The characteristic polynomial of [an n x n matrix] A, denoted by p_A(t), is the polynomial defined by p_A ( t ) = det ( t I - A ) where I denotes the n-by-n identity matrix.". In addition, however, the underlying ring must be commutative, see definition in Lang, p. 561: " Let k be a commutative ring ... Let M be any n x n matrix in k ... We define the characteristic polynomial P_M(t) to be the determinant det ( t I_n - M ) where I_n is the unit n x n matrix." To be more precise, the matrices A and I on the right hand side are matrices with coefficients of a polynomial ring. Therefore, the original matrix A over a given commutative ring must be transformed into corresponding matrices over the polynomial ring over the given ring. (Contributed by AV, 2-Aug-2019)

Ref Expression
Assertion df-chpmat CharPlyMat = ( 𝑛 ∈ Fin , 𝑟 ∈ V ↦ ( 𝑚 ∈ ( Base ‘ ( 𝑛 Mat 𝑟 ) ) ↦ ( ( 𝑛 maDet ( Poly1𝑟 ) ) ‘ ( ( ( var1𝑟 ) ( ·𝑠 ‘ ( 𝑛 Mat ( Poly1𝑟 ) ) ) ( 1r ‘ ( 𝑛 Mat ( Poly1𝑟 ) ) ) ) ( -g ‘ ( 𝑛 Mat ( Poly1𝑟 ) ) ) ( ( 𝑛 matToPolyMat 𝑟 ) ‘ 𝑚 ) ) ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cchpmat CharPlyMat
1 vn 𝑛
2 cfn Fin
3 vr 𝑟
4 cvv V
5 vm 𝑚
6 cbs Base
7 1 cv 𝑛
8 cmat Mat
9 3 cv 𝑟
10 7 9 8 co ( 𝑛 Mat 𝑟 )
11 10 6 cfv ( Base ‘ ( 𝑛 Mat 𝑟 ) )
12 cmdat maDet
13 cpl1 Poly1
14 9 13 cfv ( Poly1𝑟 )
15 7 14 12 co ( 𝑛 maDet ( Poly1𝑟 ) )
16 cv1 var1
17 9 16 cfv ( var1𝑟 )
18 cvsca ·𝑠
19 7 14 8 co ( 𝑛 Mat ( Poly1𝑟 ) )
20 19 18 cfv ( ·𝑠 ‘ ( 𝑛 Mat ( Poly1𝑟 ) ) )
21 cur 1r
22 19 21 cfv ( 1r ‘ ( 𝑛 Mat ( Poly1𝑟 ) ) )
23 17 22 20 co ( ( var1𝑟 ) ( ·𝑠 ‘ ( 𝑛 Mat ( Poly1𝑟 ) ) ) ( 1r ‘ ( 𝑛 Mat ( Poly1𝑟 ) ) ) )
24 csg -g
25 19 24 cfv ( -g ‘ ( 𝑛 Mat ( Poly1𝑟 ) ) )
26 cmat2pmat matToPolyMat
27 7 9 26 co ( 𝑛 matToPolyMat 𝑟 )
28 5 cv 𝑚
29 28 27 cfv ( ( 𝑛 matToPolyMat 𝑟 ) ‘ 𝑚 )
30 23 29 25 co ( ( ( var1𝑟 ) ( ·𝑠 ‘ ( 𝑛 Mat ( Poly1𝑟 ) ) ) ( 1r ‘ ( 𝑛 Mat ( Poly1𝑟 ) ) ) ) ( -g ‘ ( 𝑛 Mat ( Poly1𝑟 ) ) ) ( ( 𝑛 matToPolyMat 𝑟 ) ‘ 𝑚 ) )
31 30 15 cfv ( ( 𝑛 maDet ( Poly1𝑟 ) ) ‘ ( ( ( var1𝑟 ) ( ·𝑠 ‘ ( 𝑛 Mat ( Poly1𝑟 ) ) ) ( 1r ‘ ( 𝑛 Mat ( Poly1𝑟 ) ) ) ) ( -g ‘ ( 𝑛 Mat ( Poly1𝑟 ) ) ) ( ( 𝑛 matToPolyMat 𝑟 ) ‘ 𝑚 ) ) )
32 5 11 31 cmpt ( 𝑚 ∈ ( Base ‘ ( 𝑛 Mat 𝑟 ) ) ↦ ( ( 𝑛 maDet ( Poly1𝑟 ) ) ‘ ( ( ( var1𝑟 ) ( ·𝑠 ‘ ( 𝑛 Mat ( Poly1𝑟 ) ) ) ( 1r ‘ ( 𝑛 Mat ( Poly1𝑟 ) ) ) ) ( -g ‘ ( 𝑛 Mat ( Poly1𝑟 ) ) ) ( ( 𝑛 matToPolyMat 𝑟 ) ‘ 𝑚 ) ) ) )
33 1 3 2 4 32 cmpo ( 𝑛 ∈ Fin , 𝑟 ∈ V ↦ ( 𝑚 ∈ ( Base ‘ ( 𝑛 Mat 𝑟 ) ) ↦ ( ( 𝑛 maDet ( Poly1𝑟 ) ) ‘ ( ( ( var1𝑟 ) ( ·𝑠 ‘ ( 𝑛 Mat ( Poly1𝑟 ) ) ) ( 1r ‘ ( 𝑛 Mat ( Poly1𝑟 ) ) ) ) ( -g ‘ ( 𝑛 Mat ( Poly1𝑟 ) ) ) ( ( 𝑛 matToPolyMat 𝑟 ) ‘ 𝑚 ) ) ) ) )
34 0 33 wceq CharPlyMat = ( 𝑛 ∈ Fin , 𝑟 ∈ V ↦ ( 𝑚 ∈ ( Base ‘ ( 𝑛 Mat 𝑟 ) ) ↦ ( ( 𝑛 maDet ( Poly1𝑟 ) ) ‘ ( ( ( var1𝑟 ) ( ·𝑠 ‘ ( 𝑛 Mat ( Poly1𝑟 ) ) ) ( 1r ‘ ( 𝑛 Mat ( Poly1𝑟 ) ) ) ) ( -g ‘ ( 𝑛 Mat ( Poly1𝑟 ) ) ) ( ( 𝑛 matToPolyMat 𝑟 ) ‘ 𝑚 ) ) ) ) )