Metamath Proof Explorer


Definition df-chr

Description: The characteristic of a ring is the smallest positive integer which is equal to 0 when interpreted in the ring, or 0 if there is no such positive integer. (Contributed by Stefan O'Rear, 5-Sep-2015)

Ref Expression
Assertion df-chr chr = ( 𝑔 ∈ V ↦ ( ( od ‘ 𝑔 ) ‘ ( 1r𝑔 ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cchr chr
1 vg 𝑔
2 cvv V
3 cod od
4 1 cv 𝑔
5 4 3 cfv ( od ‘ 𝑔 )
6 cur 1r
7 4 6 cfv ( 1r𝑔 )
8 7 5 cfv ( ( od ‘ 𝑔 ) ‘ ( 1r𝑔 ) )
9 1 2 8 cmpt ( 𝑔 ∈ V ↦ ( ( od ‘ 𝑔 ) ‘ ( 1r𝑔 ) ) )
10 0 9 wceq chr = ( 𝑔 ∈ V ↦ ( ( od ‘ 𝑔 ) ‘ ( 1r𝑔 ) ) )