Metamath Proof Explorer


Definition df-cic

Description: Function returning the set of isomorphic objects for each category c . Definition 3.15 of Adamek p. 29. Analogous to the definition of the group isomorphism relation ~=g , see df-gic . (Contributed by AV, 4-Apr-2020)

Ref Expression
Assertion df-cic 𝑐 = ( 𝑐 ∈ Cat ↦ ( ( Iso ‘ 𝑐 ) supp ∅ ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 ccic 𝑐
1 vc 𝑐
2 ccat Cat
3 ciso Iso
4 1 cv 𝑐
5 4 3 cfv ( Iso ‘ 𝑐 )
6 csupp supp
7 c0
8 5 7 6 co ( ( Iso ‘ 𝑐 ) supp ∅ )
9 1 2 8 cmpt ( 𝑐 ∈ Cat ↦ ( ( Iso ‘ 𝑐 ) supp ∅ ) )
10 0 9 wceq 𝑐 = ( 𝑐 ∈ Cat ↦ ( ( Iso ‘ 𝑐 ) supp ∅ ) )