| Step | Hyp | Ref | Expression | 
						
							| 0 |  | ccid | ⊢ Id | 
						
							| 1 |  | vc | ⊢ 𝑐 | 
						
							| 2 |  | ccat | ⊢ Cat | 
						
							| 3 |  | cbs | ⊢ Base | 
						
							| 4 | 1 | cv | ⊢ 𝑐 | 
						
							| 5 | 4 3 | cfv | ⊢ ( Base ‘ 𝑐 ) | 
						
							| 6 |  | vb | ⊢ 𝑏 | 
						
							| 7 |  | chom | ⊢ Hom | 
						
							| 8 | 4 7 | cfv | ⊢ ( Hom  ‘ 𝑐 ) | 
						
							| 9 |  | vh | ⊢ ℎ | 
						
							| 10 |  | cco | ⊢ comp | 
						
							| 11 | 4 10 | cfv | ⊢ ( comp ‘ 𝑐 ) | 
						
							| 12 |  | vo | ⊢ 𝑜 | 
						
							| 13 |  | vx | ⊢ 𝑥 | 
						
							| 14 | 6 | cv | ⊢ 𝑏 | 
						
							| 15 |  | vg | ⊢ 𝑔 | 
						
							| 16 | 13 | cv | ⊢ 𝑥 | 
						
							| 17 | 9 | cv | ⊢ ℎ | 
						
							| 18 | 16 16 17 | co | ⊢ ( 𝑥 ℎ 𝑥 ) | 
						
							| 19 |  | vy | ⊢ 𝑦 | 
						
							| 20 |  | vf | ⊢ 𝑓 | 
						
							| 21 | 19 | cv | ⊢ 𝑦 | 
						
							| 22 | 21 16 17 | co | ⊢ ( 𝑦 ℎ 𝑥 ) | 
						
							| 23 | 15 | cv | ⊢ 𝑔 | 
						
							| 24 | 21 16 | cop | ⊢ 〈 𝑦 ,  𝑥 〉 | 
						
							| 25 | 12 | cv | ⊢ 𝑜 | 
						
							| 26 | 24 16 25 | co | ⊢ ( 〈 𝑦 ,  𝑥 〉 𝑜 𝑥 ) | 
						
							| 27 | 20 | cv | ⊢ 𝑓 | 
						
							| 28 | 23 27 26 | co | ⊢ ( 𝑔 ( 〈 𝑦 ,  𝑥 〉 𝑜 𝑥 ) 𝑓 ) | 
						
							| 29 | 28 27 | wceq | ⊢ ( 𝑔 ( 〈 𝑦 ,  𝑥 〉 𝑜 𝑥 ) 𝑓 )  =  𝑓 | 
						
							| 30 | 29 20 22 | wral | ⊢ ∀ 𝑓  ∈  ( 𝑦 ℎ 𝑥 ) ( 𝑔 ( 〈 𝑦 ,  𝑥 〉 𝑜 𝑥 ) 𝑓 )  =  𝑓 | 
						
							| 31 | 16 21 17 | co | ⊢ ( 𝑥 ℎ 𝑦 ) | 
						
							| 32 | 16 16 | cop | ⊢ 〈 𝑥 ,  𝑥 〉 | 
						
							| 33 | 32 21 25 | co | ⊢ ( 〈 𝑥 ,  𝑥 〉 𝑜 𝑦 ) | 
						
							| 34 | 27 23 33 | co | ⊢ ( 𝑓 ( 〈 𝑥 ,  𝑥 〉 𝑜 𝑦 ) 𝑔 ) | 
						
							| 35 | 34 27 | wceq | ⊢ ( 𝑓 ( 〈 𝑥 ,  𝑥 〉 𝑜 𝑦 ) 𝑔 )  =  𝑓 | 
						
							| 36 | 35 20 31 | wral | ⊢ ∀ 𝑓  ∈  ( 𝑥 ℎ 𝑦 ) ( 𝑓 ( 〈 𝑥 ,  𝑥 〉 𝑜 𝑦 ) 𝑔 )  =  𝑓 | 
						
							| 37 | 30 36 | wa | ⊢ ( ∀ 𝑓  ∈  ( 𝑦 ℎ 𝑥 ) ( 𝑔 ( 〈 𝑦 ,  𝑥 〉 𝑜 𝑥 ) 𝑓 )  =  𝑓  ∧  ∀ 𝑓  ∈  ( 𝑥 ℎ 𝑦 ) ( 𝑓 ( 〈 𝑥 ,  𝑥 〉 𝑜 𝑦 ) 𝑔 )  =  𝑓 ) | 
						
							| 38 | 37 19 14 | wral | ⊢ ∀ 𝑦  ∈  𝑏 ( ∀ 𝑓  ∈  ( 𝑦 ℎ 𝑥 ) ( 𝑔 ( 〈 𝑦 ,  𝑥 〉 𝑜 𝑥 ) 𝑓 )  =  𝑓  ∧  ∀ 𝑓  ∈  ( 𝑥 ℎ 𝑦 ) ( 𝑓 ( 〈 𝑥 ,  𝑥 〉 𝑜 𝑦 ) 𝑔 )  =  𝑓 ) | 
						
							| 39 | 38 15 18 | crio | ⊢ ( ℩ 𝑔  ∈  ( 𝑥 ℎ 𝑥 ) ∀ 𝑦  ∈  𝑏 ( ∀ 𝑓  ∈  ( 𝑦 ℎ 𝑥 ) ( 𝑔 ( 〈 𝑦 ,  𝑥 〉 𝑜 𝑥 ) 𝑓 )  =  𝑓  ∧  ∀ 𝑓  ∈  ( 𝑥 ℎ 𝑦 ) ( 𝑓 ( 〈 𝑥 ,  𝑥 〉 𝑜 𝑦 ) 𝑔 )  =  𝑓 ) ) | 
						
							| 40 | 13 14 39 | cmpt | ⊢ ( 𝑥  ∈  𝑏  ↦  ( ℩ 𝑔  ∈  ( 𝑥 ℎ 𝑥 ) ∀ 𝑦  ∈  𝑏 ( ∀ 𝑓  ∈  ( 𝑦 ℎ 𝑥 ) ( 𝑔 ( 〈 𝑦 ,  𝑥 〉 𝑜 𝑥 ) 𝑓 )  =  𝑓  ∧  ∀ 𝑓  ∈  ( 𝑥 ℎ 𝑦 ) ( 𝑓 ( 〈 𝑥 ,  𝑥 〉 𝑜 𝑦 ) 𝑔 )  =  𝑓 ) ) ) | 
						
							| 41 | 12 11 40 | csb | ⊢ ⦋ ( comp ‘ 𝑐 )  /  𝑜 ⦌ ( 𝑥  ∈  𝑏  ↦  ( ℩ 𝑔  ∈  ( 𝑥 ℎ 𝑥 ) ∀ 𝑦  ∈  𝑏 ( ∀ 𝑓  ∈  ( 𝑦 ℎ 𝑥 ) ( 𝑔 ( 〈 𝑦 ,  𝑥 〉 𝑜 𝑥 ) 𝑓 )  =  𝑓  ∧  ∀ 𝑓  ∈  ( 𝑥 ℎ 𝑦 ) ( 𝑓 ( 〈 𝑥 ,  𝑥 〉 𝑜 𝑦 ) 𝑔 )  =  𝑓 ) ) ) | 
						
							| 42 | 9 8 41 | csb | ⊢ ⦋ ( Hom  ‘ 𝑐 )  /  ℎ ⦌ ⦋ ( comp ‘ 𝑐 )  /  𝑜 ⦌ ( 𝑥  ∈  𝑏  ↦  ( ℩ 𝑔  ∈  ( 𝑥 ℎ 𝑥 ) ∀ 𝑦  ∈  𝑏 ( ∀ 𝑓  ∈  ( 𝑦 ℎ 𝑥 ) ( 𝑔 ( 〈 𝑦 ,  𝑥 〉 𝑜 𝑥 ) 𝑓 )  =  𝑓  ∧  ∀ 𝑓  ∈  ( 𝑥 ℎ 𝑦 ) ( 𝑓 ( 〈 𝑥 ,  𝑥 〉 𝑜 𝑦 ) 𝑔 )  =  𝑓 ) ) ) | 
						
							| 43 | 6 5 42 | csb | ⊢ ⦋ ( Base ‘ 𝑐 )  /  𝑏 ⦌ ⦋ ( Hom  ‘ 𝑐 )  /  ℎ ⦌ ⦋ ( comp ‘ 𝑐 )  /  𝑜 ⦌ ( 𝑥  ∈  𝑏  ↦  ( ℩ 𝑔  ∈  ( 𝑥 ℎ 𝑥 ) ∀ 𝑦  ∈  𝑏 ( ∀ 𝑓  ∈  ( 𝑦 ℎ 𝑥 ) ( 𝑔 ( 〈 𝑦 ,  𝑥 〉 𝑜 𝑥 ) 𝑓 )  =  𝑓  ∧  ∀ 𝑓  ∈  ( 𝑥 ℎ 𝑦 ) ( 𝑓 ( 〈 𝑥 ,  𝑥 〉 𝑜 𝑦 ) 𝑔 )  =  𝑓 ) ) ) | 
						
							| 44 | 1 2 43 | cmpt | ⊢ ( 𝑐  ∈  Cat  ↦  ⦋ ( Base ‘ 𝑐 )  /  𝑏 ⦌ ⦋ ( Hom  ‘ 𝑐 )  /  ℎ ⦌ ⦋ ( comp ‘ 𝑐 )  /  𝑜 ⦌ ( 𝑥  ∈  𝑏  ↦  ( ℩ 𝑔  ∈  ( 𝑥 ℎ 𝑥 ) ∀ 𝑦  ∈  𝑏 ( ∀ 𝑓  ∈  ( 𝑦 ℎ 𝑥 ) ( 𝑔 ( 〈 𝑦 ,  𝑥 〉 𝑜 𝑥 ) 𝑓 )  =  𝑓  ∧  ∀ 𝑓  ∈  ( 𝑥 ℎ 𝑦 ) ( 𝑓 ( 〈 𝑥 ,  𝑥 〉 𝑜 𝑦 ) 𝑔 )  =  𝑓 ) ) ) ) | 
						
							| 45 | 0 44 | wceq | ⊢ Id  =  ( 𝑐  ∈  Cat  ↦  ⦋ ( Base ‘ 𝑐 )  /  𝑏 ⦌ ⦋ ( Hom  ‘ 𝑐 )  /  ℎ ⦌ ⦋ ( comp ‘ 𝑐 )  /  𝑜 ⦌ ( 𝑥  ∈  𝑏  ↦  ( ℩ 𝑔  ∈  ( 𝑥 ℎ 𝑥 ) ∀ 𝑦  ∈  𝑏 ( ∀ 𝑓  ∈  ( 𝑦 ℎ 𝑥 ) ( 𝑔 ( 〈 𝑦 ,  𝑥 〉 𝑜 𝑥 ) 𝑓 )  =  𝑓  ∧  ∀ 𝑓  ∈  ( 𝑥 ℎ 𝑦 ) ( 𝑓 ( 〈 𝑥 ,  𝑥 〉 𝑜 𝑦 ) 𝑔 )  =  𝑓 ) ) ) ) |