Step |
Hyp |
Ref |
Expression |
0 |
|
ccid |
⊢ Id |
1 |
|
vc |
⊢ 𝑐 |
2 |
|
ccat |
⊢ Cat |
3 |
|
cbs |
⊢ Base |
4 |
1
|
cv |
⊢ 𝑐 |
5 |
4 3
|
cfv |
⊢ ( Base ‘ 𝑐 ) |
6 |
|
vb |
⊢ 𝑏 |
7 |
|
chom |
⊢ Hom |
8 |
4 7
|
cfv |
⊢ ( Hom ‘ 𝑐 ) |
9 |
|
vh |
⊢ ℎ |
10 |
|
cco |
⊢ comp |
11 |
4 10
|
cfv |
⊢ ( comp ‘ 𝑐 ) |
12 |
|
vo |
⊢ 𝑜 |
13 |
|
vx |
⊢ 𝑥 |
14 |
6
|
cv |
⊢ 𝑏 |
15 |
|
vg |
⊢ 𝑔 |
16 |
13
|
cv |
⊢ 𝑥 |
17 |
9
|
cv |
⊢ ℎ |
18 |
16 16 17
|
co |
⊢ ( 𝑥 ℎ 𝑥 ) |
19 |
|
vy |
⊢ 𝑦 |
20 |
|
vf |
⊢ 𝑓 |
21 |
19
|
cv |
⊢ 𝑦 |
22 |
21 16 17
|
co |
⊢ ( 𝑦 ℎ 𝑥 ) |
23 |
15
|
cv |
⊢ 𝑔 |
24 |
21 16
|
cop |
⊢ 〈 𝑦 , 𝑥 〉 |
25 |
12
|
cv |
⊢ 𝑜 |
26 |
24 16 25
|
co |
⊢ ( 〈 𝑦 , 𝑥 〉 𝑜 𝑥 ) |
27 |
20
|
cv |
⊢ 𝑓 |
28 |
23 27 26
|
co |
⊢ ( 𝑔 ( 〈 𝑦 , 𝑥 〉 𝑜 𝑥 ) 𝑓 ) |
29 |
28 27
|
wceq |
⊢ ( 𝑔 ( 〈 𝑦 , 𝑥 〉 𝑜 𝑥 ) 𝑓 ) = 𝑓 |
30 |
29 20 22
|
wral |
⊢ ∀ 𝑓 ∈ ( 𝑦 ℎ 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 𝑜 𝑥 ) 𝑓 ) = 𝑓 |
31 |
16 21 17
|
co |
⊢ ( 𝑥 ℎ 𝑦 ) |
32 |
16 16
|
cop |
⊢ 〈 𝑥 , 𝑥 〉 |
33 |
32 21 25
|
co |
⊢ ( 〈 𝑥 , 𝑥 〉 𝑜 𝑦 ) |
34 |
27 23 33
|
co |
⊢ ( 𝑓 ( 〈 𝑥 , 𝑥 〉 𝑜 𝑦 ) 𝑔 ) |
35 |
34 27
|
wceq |
⊢ ( 𝑓 ( 〈 𝑥 , 𝑥 〉 𝑜 𝑦 ) 𝑔 ) = 𝑓 |
36 |
35 20 31
|
wral |
⊢ ∀ 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 𝑜 𝑦 ) 𝑔 ) = 𝑓 |
37 |
30 36
|
wa |
⊢ ( ∀ 𝑓 ∈ ( 𝑦 ℎ 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 𝑜 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 𝑜 𝑦 ) 𝑔 ) = 𝑓 ) |
38 |
37 19 14
|
wral |
⊢ ∀ 𝑦 ∈ 𝑏 ( ∀ 𝑓 ∈ ( 𝑦 ℎ 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 𝑜 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 𝑜 𝑦 ) 𝑔 ) = 𝑓 ) |
39 |
38 15 18
|
crio |
⊢ ( ℩ 𝑔 ∈ ( 𝑥 ℎ 𝑥 ) ∀ 𝑦 ∈ 𝑏 ( ∀ 𝑓 ∈ ( 𝑦 ℎ 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 𝑜 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 𝑜 𝑦 ) 𝑔 ) = 𝑓 ) ) |
40 |
13 14 39
|
cmpt |
⊢ ( 𝑥 ∈ 𝑏 ↦ ( ℩ 𝑔 ∈ ( 𝑥 ℎ 𝑥 ) ∀ 𝑦 ∈ 𝑏 ( ∀ 𝑓 ∈ ( 𝑦 ℎ 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 𝑜 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 𝑜 𝑦 ) 𝑔 ) = 𝑓 ) ) ) |
41 |
12 11 40
|
csb |
⊢ ⦋ ( comp ‘ 𝑐 ) / 𝑜 ⦌ ( 𝑥 ∈ 𝑏 ↦ ( ℩ 𝑔 ∈ ( 𝑥 ℎ 𝑥 ) ∀ 𝑦 ∈ 𝑏 ( ∀ 𝑓 ∈ ( 𝑦 ℎ 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 𝑜 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 𝑜 𝑦 ) 𝑔 ) = 𝑓 ) ) ) |
42 |
9 8 41
|
csb |
⊢ ⦋ ( Hom ‘ 𝑐 ) / ℎ ⦌ ⦋ ( comp ‘ 𝑐 ) / 𝑜 ⦌ ( 𝑥 ∈ 𝑏 ↦ ( ℩ 𝑔 ∈ ( 𝑥 ℎ 𝑥 ) ∀ 𝑦 ∈ 𝑏 ( ∀ 𝑓 ∈ ( 𝑦 ℎ 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 𝑜 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 𝑜 𝑦 ) 𝑔 ) = 𝑓 ) ) ) |
43 |
6 5 42
|
csb |
⊢ ⦋ ( Base ‘ 𝑐 ) / 𝑏 ⦌ ⦋ ( Hom ‘ 𝑐 ) / ℎ ⦌ ⦋ ( comp ‘ 𝑐 ) / 𝑜 ⦌ ( 𝑥 ∈ 𝑏 ↦ ( ℩ 𝑔 ∈ ( 𝑥 ℎ 𝑥 ) ∀ 𝑦 ∈ 𝑏 ( ∀ 𝑓 ∈ ( 𝑦 ℎ 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 𝑜 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 𝑜 𝑦 ) 𝑔 ) = 𝑓 ) ) ) |
44 |
1 2 43
|
cmpt |
⊢ ( 𝑐 ∈ Cat ↦ ⦋ ( Base ‘ 𝑐 ) / 𝑏 ⦌ ⦋ ( Hom ‘ 𝑐 ) / ℎ ⦌ ⦋ ( comp ‘ 𝑐 ) / 𝑜 ⦌ ( 𝑥 ∈ 𝑏 ↦ ( ℩ 𝑔 ∈ ( 𝑥 ℎ 𝑥 ) ∀ 𝑦 ∈ 𝑏 ( ∀ 𝑓 ∈ ( 𝑦 ℎ 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 𝑜 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 𝑜 𝑦 ) 𝑔 ) = 𝑓 ) ) ) ) |
45 |
0 44
|
wceq |
⊢ Id = ( 𝑐 ∈ Cat ↦ ⦋ ( Base ‘ 𝑐 ) / 𝑏 ⦌ ⦋ ( Hom ‘ 𝑐 ) / ℎ ⦌ ⦋ ( comp ‘ 𝑐 ) / 𝑜 ⦌ ( 𝑥 ∈ 𝑏 ↦ ( ℩ 𝑔 ∈ ( 𝑥 ℎ 𝑥 ) ∀ 𝑦 ∈ 𝑏 ( ∀ 𝑓 ∈ ( 𝑦 ℎ 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 𝑜 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 𝑜 𝑦 ) 𝑔 ) = 𝑓 ) ) ) ) |