Metamath Proof Explorer


Definition df-cj

Description: Define the complex conjugate function. See cjcli for its closure and cjval for its value. (Contributed by NM, 9-May-1999) (Revised by Mario Carneiro, 6-Nov-2013)

Ref Expression
Assertion df-cj ∗ = ( 𝑥 ∈ ℂ ↦ ( 𝑦 ∈ ℂ ( ( 𝑥 + 𝑦 ) ∈ ℝ ∧ ( i · ( 𝑥𝑦 ) ) ∈ ℝ ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 ccj
1 vx 𝑥
2 cc
3 vy 𝑦
4 1 cv 𝑥
5 caddc +
6 3 cv 𝑦
7 4 6 5 co ( 𝑥 + 𝑦 )
8 cr
9 7 8 wcel ( 𝑥 + 𝑦 ) ∈ ℝ
10 ci i
11 cmul ·
12 cmin
13 4 6 12 co ( 𝑥𝑦 )
14 10 13 11 co ( i · ( 𝑥𝑦 ) )
15 14 8 wcel ( i · ( 𝑥𝑦 ) ) ∈ ℝ
16 9 15 wa ( ( 𝑥 + 𝑦 ) ∈ ℝ ∧ ( i · ( 𝑥𝑦 ) ) ∈ ℝ )
17 16 3 2 crio ( 𝑦 ∈ ℂ ( ( 𝑥 + 𝑦 ) ∈ ℝ ∧ ( i · ( 𝑥𝑦 ) ) ∈ ℝ ) )
18 1 2 17 cmpt ( 𝑥 ∈ ℂ ↦ ( 𝑦 ∈ ℂ ( ( 𝑥 + 𝑦 ) ∈ ℝ ∧ ( i · ( 𝑥𝑦 ) ) ∈ ℝ ) ) )
19 0 18 wceq ∗ = ( 𝑥 ∈ ℂ ↦ ( 𝑦 ∈ ℂ ( ( 𝑥 + 𝑦 ) ∈ ℝ ∧ ( i · ( 𝑥𝑦 ) ) ∈ ℝ ) ) )