| Step |
Hyp |
Ref |
Expression |
| 0 |
|
ccj |
⊢ ∗ |
| 1 |
|
vx |
⊢ 𝑥 |
| 2 |
|
cc |
⊢ ℂ |
| 3 |
|
vy |
⊢ 𝑦 |
| 4 |
1
|
cv |
⊢ 𝑥 |
| 5 |
|
caddc |
⊢ + |
| 6 |
3
|
cv |
⊢ 𝑦 |
| 7 |
4 6 5
|
co |
⊢ ( 𝑥 + 𝑦 ) |
| 8 |
|
cr |
⊢ ℝ |
| 9 |
7 8
|
wcel |
⊢ ( 𝑥 + 𝑦 ) ∈ ℝ |
| 10 |
|
ci |
⊢ i |
| 11 |
|
cmul |
⊢ · |
| 12 |
|
cmin |
⊢ − |
| 13 |
4 6 12
|
co |
⊢ ( 𝑥 − 𝑦 ) |
| 14 |
10 13 11
|
co |
⊢ ( i · ( 𝑥 − 𝑦 ) ) |
| 15 |
14 8
|
wcel |
⊢ ( i · ( 𝑥 − 𝑦 ) ) ∈ ℝ |
| 16 |
9 15
|
wa |
⊢ ( ( 𝑥 + 𝑦 ) ∈ ℝ ∧ ( i · ( 𝑥 − 𝑦 ) ) ∈ ℝ ) |
| 17 |
16 3 2
|
crio |
⊢ ( ℩ 𝑦 ∈ ℂ ( ( 𝑥 + 𝑦 ) ∈ ℝ ∧ ( i · ( 𝑥 − 𝑦 ) ) ∈ ℝ ) ) |
| 18 |
1 2 17
|
cmpt |
⊢ ( 𝑥 ∈ ℂ ↦ ( ℩ 𝑦 ∈ ℂ ( ( 𝑥 + 𝑦 ) ∈ ℝ ∧ ( i · ( 𝑥 − 𝑦 ) ) ∈ ℝ ) ) ) |
| 19 |
0 18
|
wceq |
⊢ ∗ = ( 𝑥 ∈ ℂ ↦ ( ℩ 𝑦 ∈ ℂ ( ( 𝑥 + 𝑦 ) ∈ ℝ ∧ ( i · ( 𝑥 − 𝑦 ) ) ∈ ℝ ) ) ) |