Step |
Hyp |
Ref |
Expression |
0 |
|
ccj |
⊢ ∗ |
1 |
|
vx |
⊢ 𝑥 |
2 |
|
cc |
⊢ ℂ |
3 |
|
vy |
⊢ 𝑦 |
4 |
1
|
cv |
⊢ 𝑥 |
5 |
|
caddc |
⊢ + |
6 |
3
|
cv |
⊢ 𝑦 |
7 |
4 6 5
|
co |
⊢ ( 𝑥 + 𝑦 ) |
8 |
|
cr |
⊢ ℝ |
9 |
7 8
|
wcel |
⊢ ( 𝑥 + 𝑦 ) ∈ ℝ |
10 |
|
ci |
⊢ i |
11 |
|
cmul |
⊢ · |
12 |
|
cmin |
⊢ − |
13 |
4 6 12
|
co |
⊢ ( 𝑥 − 𝑦 ) |
14 |
10 13 11
|
co |
⊢ ( i · ( 𝑥 − 𝑦 ) ) |
15 |
14 8
|
wcel |
⊢ ( i · ( 𝑥 − 𝑦 ) ) ∈ ℝ |
16 |
9 15
|
wa |
⊢ ( ( 𝑥 + 𝑦 ) ∈ ℝ ∧ ( i · ( 𝑥 − 𝑦 ) ) ∈ ℝ ) |
17 |
16 3 2
|
crio |
⊢ ( ℩ 𝑦 ∈ ℂ ( ( 𝑥 + 𝑦 ) ∈ ℝ ∧ ( i · ( 𝑥 − 𝑦 ) ) ∈ ℝ ) ) |
18 |
1 2 17
|
cmpt |
⊢ ( 𝑥 ∈ ℂ ↦ ( ℩ 𝑦 ∈ ℂ ( ( 𝑥 + 𝑦 ) ∈ ℝ ∧ ( i · ( 𝑥 − 𝑦 ) ) ∈ ℝ ) ) ) |
19 |
0 18
|
wceq |
⊢ ∗ = ( 𝑥 ∈ ℂ ↦ ( ℩ 𝑦 ∈ ℂ ( ( 𝑥 + 𝑦 ) ∈ ℝ ∧ ( i · ( 𝑥 − 𝑦 ) ) ∈ ℝ ) ) ) |