Metamath Proof Explorer


Definition df-clat

Description: Define the class of all complete lattices, where every subset of the base set has an LUB and a GLB. (Contributed by NM, 18-Oct-2012) (Revised by NM, 12-Sep-2018)

Ref Expression
Assertion df-clat CLat = { 𝑝 ∈ Poset ∣ ( dom ( lub ‘ 𝑝 ) = 𝒫 ( Base ‘ 𝑝 ) ∧ dom ( glb ‘ 𝑝 ) = 𝒫 ( Base ‘ 𝑝 ) ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 ccla CLat
1 vp 𝑝
2 cpo Poset
3 club lub
4 1 cv 𝑝
5 4 3 cfv ( lub ‘ 𝑝 )
6 5 cdm dom ( lub ‘ 𝑝 )
7 cbs Base
8 4 7 cfv ( Base ‘ 𝑝 )
9 8 cpw 𝒫 ( Base ‘ 𝑝 )
10 6 9 wceq dom ( lub ‘ 𝑝 ) = 𝒫 ( Base ‘ 𝑝 )
11 cglb glb
12 4 11 cfv ( glb ‘ 𝑝 )
13 12 cdm dom ( glb ‘ 𝑝 )
14 13 9 wceq dom ( glb ‘ 𝑝 ) = 𝒫 ( Base ‘ 𝑝 )
15 10 14 wa ( dom ( lub ‘ 𝑝 ) = 𝒫 ( Base ‘ 𝑝 ) ∧ dom ( glb ‘ 𝑝 ) = 𝒫 ( Base ‘ 𝑝 ) )
16 15 1 2 crab { 𝑝 ∈ Poset ∣ ( dom ( lub ‘ 𝑝 ) = 𝒫 ( Base ‘ 𝑝 ) ∧ dom ( glb ‘ 𝑝 ) = 𝒫 ( Base ‘ 𝑝 ) ) }
17 0 16 wceq CLat = { 𝑝 ∈ Poset ∣ ( dom ( lub ‘ 𝑝 ) = 𝒫 ( Base ‘ 𝑝 ) ∧ dom ( glb ‘ 𝑝 ) = 𝒫 ( Base ‘ 𝑝 ) ) }