| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cli |
⊢ ⇝ |
| 1 |
|
vf |
⊢ 𝑓 |
| 2 |
|
vy |
⊢ 𝑦 |
| 3 |
2
|
cv |
⊢ 𝑦 |
| 4 |
|
cc |
⊢ ℂ |
| 5 |
3 4
|
wcel |
⊢ 𝑦 ∈ ℂ |
| 6 |
|
vx |
⊢ 𝑥 |
| 7 |
|
crp |
⊢ ℝ+ |
| 8 |
|
vj |
⊢ 𝑗 |
| 9 |
|
cz |
⊢ ℤ |
| 10 |
|
vk |
⊢ 𝑘 |
| 11 |
|
cuz |
⊢ ℤ≥ |
| 12 |
8
|
cv |
⊢ 𝑗 |
| 13 |
12 11
|
cfv |
⊢ ( ℤ≥ ‘ 𝑗 ) |
| 14 |
1
|
cv |
⊢ 𝑓 |
| 15 |
10
|
cv |
⊢ 𝑘 |
| 16 |
15 14
|
cfv |
⊢ ( 𝑓 ‘ 𝑘 ) |
| 17 |
16 4
|
wcel |
⊢ ( 𝑓 ‘ 𝑘 ) ∈ ℂ |
| 18 |
|
cabs |
⊢ abs |
| 19 |
|
cmin |
⊢ − |
| 20 |
16 3 19
|
co |
⊢ ( ( 𝑓 ‘ 𝑘 ) − 𝑦 ) |
| 21 |
20 18
|
cfv |
⊢ ( abs ‘ ( ( 𝑓 ‘ 𝑘 ) − 𝑦 ) ) |
| 22 |
|
clt |
⊢ < |
| 23 |
6
|
cv |
⊢ 𝑥 |
| 24 |
21 23 22
|
wbr |
⊢ ( abs ‘ ( ( 𝑓 ‘ 𝑘 ) − 𝑦 ) ) < 𝑥 |
| 25 |
17 24
|
wa |
⊢ ( ( 𝑓 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝑓 ‘ 𝑘 ) − 𝑦 ) ) < 𝑥 ) |
| 26 |
25 10 13
|
wral |
⊢ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝑓 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝑓 ‘ 𝑘 ) − 𝑦 ) ) < 𝑥 ) |
| 27 |
26 8 9
|
wrex |
⊢ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝑓 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝑓 ‘ 𝑘 ) − 𝑦 ) ) < 𝑥 ) |
| 28 |
27 6 7
|
wral |
⊢ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝑓 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝑓 ‘ 𝑘 ) − 𝑦 ) ) < 𝑥 ) |
| 29 |
5 28
|
wa |
⊢ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝑓 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝑓 ‘ 𝑘 ) − 𝑦 ) ) < 𝑥 ) ) |
| 30 |
29 1 2
|
copab |
⊢ { 〈 𝑓 , 𝑦 〉 ∣ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝑓 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝑓 ‘ 𝑘 ) − 𝑦 ) ) < 𝑥 ) ) } |
| 31 |
0 30
|
wceq |
⊢ ⇝ = { 〈 𝑓 , 𝑦 〉 ∣ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝑓 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝑓 ‘ 𝑘 ) − 𝑦 ) ) < 𝑥 ) ) } |