Metamath Proof Explorer


Definition df-clwlks

Description: Define the set of all closed walks (in an undirected graph).

According to definition 4 in Huneke p. 2: "A walk of length n on (a graph) G is an ordered sequence v0 , v1 , ... v(n) of vertices such that v(i) and v(i+1) are neighbors (i.e are connected by an edge). We say the walk is closed if v(n) = v0".

According to the definition of a walk as two mappings f from { 0 , ... , ( n - 1 ) } and p from { 0 , ... , n }, where f enumerates the (indices of the) edges, and p enumerates the vertices, a closed walk is represented by the following sequence: p(0) e(f(0)) p(1) e(f(1)) ... p(n-1) e(f(n-1)) p(n)=p(0).

Notice that by this definition, a single vertex can be considered as a closed walk of length 0, see also 0clwlk . (Contributed by Alexander van der Vekens, 12-Mar-2018) (Revised by AV, 16-Feb-2021)

Ref Expression
Assertion df-clwlks ClWalks = ( 𝑔 ∈ V ↦ { ⟨ 𝑓 , 𝑝 ⟩ ∣ ( 𝑓 ( Walks ‘ 𝑔 ) 𝑝 ∧ ( 𝑝 ‘ 0 ) = ( 𝑝 ‘ ( ♯ ‘ 𝑓 ) ) ) } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cclwlks ClWalks
1 vg 𝑔
2 cvv V
3 vf 𝑓
4 vp 𝑝
5 3 cv 𝑓
6 cwlks Walks
7 1 cv 𝑔
8 7 6 cfv ( Walks ‘ 𝑔 )
9 4 cv 𝑝
10 5 9 8 wbr 𝑓 ( Walks ‘ 𝑔 ) 𝑝
11 cc0 0
12 11 9 cfv ( 𝑝 ‘ 0 )
13 chash
14 5 13 cfv ( ♯ ‘ 𝑓 )
15 14 9 cfv ( 𝑝 ‘ ( ♯ ‘ 𝑓 ) )
16 12 15 wceq ( 𝑝 ‘ 0 ) = ( 𝑝 ‘ ( ♯ ‘ 𝑓 ) )
17 10 16 wa ( 𝑓 ( Walks ‘ 𝑔 ) 𝑝 ∧ ( 𝑝 ‘ 0 ) = ( 𝑝 ‘ ( ♯ ‘ 𝑓 ) ) )
18 17 3 4 copab { ⟨ 𝑓 , 𝑝 ⟩ ∣ ( 𝑓 ( Walks ‘ 𝑔 ) 𝑝 ∧ ( 𝑝 ‘ 0 ) = ( 𝑝 ‘ ( ♯ ‘ 𝑓 ) ) ) }
19 1 2 18 cmpt ( 𝑔 ∈ V ↦ { ⟨ 𝑓 , 𝑝 ⟩ ∣ ( 𝑓 ( Walks ‘ 𝑔 ) 𝑝 ∧ ( 𝑝 ‘ 0 ) = ( 𝑝 ‘ ( ♯ ‘ 𝑓 ) ) ) } )
20 0 19 wceq ClWalks = ( 𝑔 ∈ V ↦ { ⟨ 𝑓 , 𝑝 ⟩ ∣ ( 𝑓 ( Walks ‘ 𝑔 ) 𝑝 ∧ ( 𝑝 ‘ 0 ) = ( 𝑝 ‘ ( ♯ ‘ 𝑓 ) ) ) } )