| Step |
Hyp |
Ref |
Expression |
| 0 |
|
ccm |
⊢ 𝐶ℋ |
| 1 |
|
vx |
⊢ 𝑥 |
| 2 |
|
vy |
⊢ 𝑦 |
| 3 |
1
|
cv |
⊢ 𝑥 |
| 4 |
|
cch |
⊢ Cℋ |
| 5 |
3 4
|
wcel |
⊢ 𝑥 ∈ Cℋ |
| 6 |
2
|
cv |
⊢ 𝑦 |
| 7 |
6 4
|
wcel |
⊢ 𝑦 ∈ Cℋ |
| 8 |
5 7
|
wa |
⊢ ( 𝑥 ∈ Cℋ ∧ 𝑦 ∈ Cℋ ) |
| 9 |
3 6
|
cin |
⊢ ( 𝑥 ∩ 𝑦 ) |
| 10 |
|
chj |
⊢ ∨ℋ |
| 11 |
|
cort |
⊢ ⊥ |
| 12 |
6 11
|
cfv |
⊢ ( ⊥ ‘ 𝑦 ) |
| 13 |
3 12
|
cin |
⊢ ( 𝑥 ∩ ( ⊥ ‘ 𝑦 ) ) |
| 14 |
9 13 10
|
co |
⊢ ( ( 𝑥 ∩ 𝑦 ) ∨ℋ ( 𝑥 ∩ ( ⊥ ‘ 𝑦 ) ) ) |
| 15 |
3 14
|
wceq |
⊢ 𝑥 = ( ( 𝑥 ∩ 𝑦 ) ∨ℋ ( 𝑥 ∩ ( ⊥ ‘ 𝑦 ) ) ) |
| 16 |
8 15
|
wa |
⊢ ( ( 𝑥 ∈ Cℋ ∧ 𝑦 ∈ Cℋ ) ∧ 𝑥 = ( ( 𝑥 ∩ 𝑦 ) ∨ℋ ( 𝑥 ∩ ( ⊥ ‘ 𝑦 ) ) ) ) |
| 17 |
16 1 2
|
copab |
⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ Cℋ ∧ 𝑦 ∈ Cℋ ) ∧ 𝑥 = ( ( 𝑥 ∩ 𝑦 ) ∨ℋ ( 𝑥 ∩ ( ⊥ ‘ 𝑦 ) ) ) ) } |
| 18 |
0 17
|
wceq |
⊢ 𝐶ℋ = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ Cℋ ∧ 𝑦 ∈ Cℋ ) ∧ 𝑥 = ( ( 𝑥 ∩ 𝑦 ) ∨ℋ ( 𝑥 ∩ ( ⊥ ‘ 𝑦 ) ) ) ) } |