| Step |
Hyp |
Ref |
Expression |
| 0 |
|
ccmet |
⊢ CMet |
| 1 |
|
vx |
⊢ 𝑥 |
| 2 |
|
cvv |
⊢ V |
| 3 |
|
vd |
⊢ 𝑑 |
| 4 |
|
cmet |
⊢ Met |
| 5 |
1
|
cv |
⊢ 𝑥 |
| 6 |
5 4
|
cfv |
⊢ ( Met ‘ 𝑥 ) |
| 7 |
|
vf |
⊢ 𝑓 |
| 8 |
|
ccfil |
⊢ CauFil |
| 9 |
3
|
cv |
⊢ 𝑑 |
| 10 |
9 8
|
cfv |
⊢ ( CauFil ‘ 𝑑 ) |
| 11 |
|
cmopn |
⊢ MetOpen |
| 12 |
9 11
|
cfv |
⊢ ( MetOpen ‘ 𝑑 ) |
| 13 |
|
cflim |
⊢ fLim |
| 14 |
7
|
cv |
⊢ 𝑓 |
| 15 |
12 14 13
|
co |
⊢ ( ( MetOpen ‘ 𝑑 ) fLim 𝑓 ) |
| 16 |
|
c0 |
⊢ ∅ |
| 17 |
15 16
|
wne |
⊢ ( ( MetOpen ‘ 𝑑 ) fLim 𝑓 ) ≠ ∅ |
| 18 |
17 7 10
|
wral |
⊢ ∀ 𝑓 ∈ ( CauFil ‘ 𝑑 ) ( ( MetOpen ‘ 𝑑 ) fLim 𝑓 ) ≠ ∅ |
| 19 |
18 3 6
|
crab |
⊢ { 𝑑 ∈ ( Met ‘ 𝑥 ) ∣ ∀ 𝑓 ∈ ( CauFil ‘ 𝑑 ) ( ( MetOpen ‘ 𝑑 ) fLim 𝑓 ) ≠ ∅ } |
| 20 |
1 2 19
|
cmpt |
⊢ ( 𝑥 ∈ V ↦ { 𝑑 ∈ ( Met ‘ 𝑥 ) ∣ ∀ 𝑓 ∈ ( CauFil ‘ 𝑑 ) ( ( MetOpen ‘ 𝑑 ) fLim 𝑓 ) ≠ ∅ } ) |
| 21 |
0 20
|
wceq |
⊢ CMet = ( 𝑥 ∈ V ↦ { 𝑑 ∈ ( Met ‘ 𝑥 ) ∣ ∀ 𝑓 ∈ ( CauFil ‘ 𝑑 ) ( ( MetOpen ‘ 𝑑 ) fLim 𝑓 ) ≠ ∅ } ) |