Metamath Proof Explorer


Definition df-cmet

Description: Define the set of complete metrics on a given set. (Contributed by Mario Carneiro, 1-May-2014)

Ref Expression
Assertion df-cmet CMet = ( 𝑥 ∈ V ↦ { 𝑑 ∈ ( Met ‘ 𝑥 ) ∣ ∀ 𝑓 ∈ ( CauFil ‘ 𝑑 ) ( ( MetOpen ‘ 𝑑 ) fLim 𝑓 ) ≠ ∅ } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 ccmet CMet
1 vx 𝑥
2 cvv V
3 vd 𝑑
4 cmet Met
5 1 cv 𝑥
6 5 4 cfv ( Met ‘ 𝑥 )
7 vf 𝑓
8 ccfil CauFil
9 3 cv 𝑑
10 9 8 cfv ( CauFil ‘ 𝑑 )
11 cmopn MetOpen
12 9 11 cfv ( MetOpen ‘ 𝑑 )
13 cflim fLim
14 7 cv 𝑓
15 12 14 13 co ( ( MetOpen ‘ 𝑑 ) fLim 𝑓 )
16 c0
17 15 16 wne ( ( MetOpen ‘ 𝑑 ) fLim 𝑓 ) ≠ ∅
18 17 7 10 wral 𝑓 ∈ ( CauFil ‘ 𝑑 ) ( ( MetOpen ‘ 𝑑 ) fLim 𝑓 ) ≠ ∅
19 18 3 6 crab { 𝑑 ∈ ( Met ‘ 𝑥 ) ∣ ∀ 𝑓 ∈ ( CauFil ‘ 𝑑 ) ( ( MetOpen ‘ 𝑑 ) fLim 𝑓 ) ≠ ∅ }
20 1 2 19 cmpt ( 𝑥 ∈ V ↦ { 𝑑 ∈ ( Met ‘ 𝑥 ) ∣ ∀ 𝑓 ∈ ( CauFil ‘ 𝑑 ) ( ( MetOpen ‘ 𝑑 ) fLim 𝑓 ) ≠ ∅ } )
21 0 20 wceq CMet = ( 𝑥 ∈ V ↦ { 𝑑 ∈ ( Met ‘ 𝑥 ) ∣ ∀ 𝑓 ∈ ( CauFil ‘ 𝑑 ) ( ( MetOpen ‘ 𝑑 ) fLim 𝑓 ) ≠ ∅ } )