Step |
Hyp |
Ref |
Expression |
0 |
|
ccmet |
⊢ CMet |
1 |
|
vx |
⊢ 𝑥 |
2 |
|
cvv |
⊢ V |
3 |
|
vd |
⊢ 𝑑 |
4 |
|
cmet |
⊢ Met |
5 |
1
|
cv |
⊢ 𝑥 |
6 |
5 4
|
cfv |
⊢ ( Met ‘ 𝑥 ) |
7 |
|
vf |
⊢ 𝑓 |
8 |
|
ccfil |
⊢ CauFil |
9 |
3
|
cv |
⊢ 𝑑 |
10 |
9 8
|
cfv |
⊢ ( CauFil ‘ 𝑑 ) |
11 |
|
cmopn |
⊢ MetOpen |
12 |
9 11
|
cfv |
⊢ ( MetOpen ‘ 𝑑 ) |
13 |
|
cflim |
⊢ fLim |
14 |
7
|
cv |
⊢ 𝑓 |
15 |
12 14 13
|
co |
⊢ ( ( MetOpen ‘ 𝑑 ) fLim 𝑓 ) |
16 |
|
c0 |
⊢ ∅ |
17 |
15 16
|
wne |
⊢ ( ( MetOpen ‘ 𝑑 ) fLim 𝑓 ) ≠ ∅ |
18 |
17 7 10
|
wral |
⊢ ∀ 𝑓 ∈ ( CauFil ‘ 𝑑 ) ( ( MetOpen ‘ 𝑑 ) fLim 𝑓 ) ≠ ∅ |
19 |
18 3 6
|
crab |
⊢ { 𝑑 ∈ ( Met ‘ 𝑥 ) ∣ ∀ 𝑓 ∈ ( CauFil ‘ 𝑑 ) ( ( MetOpen ‘ 𝑑 ) fLim 𝑓 ) ≠ ∅ } |
20 |
1 2 19
|
cmpt |
⊢ ( 𝑥 ∈ V ↦ { 𝑑 ∈ ( Met ‘ 𝑥 ) ∣ ∀ 𝑓 ∈ ( CauFil ‘ 𝑑 ) ( ( MetOpen ‘ 𝑑 ) fLim 𝑓 ) ≠ ∅ } ) |
21 |
0 20
|
wceq |
⊢ CMet = ( 𝑥 ∈ V ↦ { 𝑑 ∈ ( Met ‘ 𝑥 ) ∣ ∀ 𝑓 ∈ ( CauFil ‘ 𝑑 ) ( ( MetOpen ‘ 𝑑 ) fLim 𝑓 ) ≠ ∅ } ) |